Advertisement

Application of the Multi-Scale-Finite-Volume Method to the Simulation of Incompressible Flows with Immersed Boundaries

  • Giuseppe Bonfigli
  • Patrick Jenny
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

A second-order accurate numerical procedure is presented for the solution of the incompressible Navier-Stokes equations with immersed boundaries in the formulation proposed by Peller et al. [5]. In particular we derive exact constraints for the pressure at immersed solid walls and show that the resulting Poisson equation is formally identical to the elliptic problems governing flows in porous media. An efficient iterative procedure for the computation of the pressure is then obtained by adapting the iterative-multi-scale-finite-volume procedure by Hajibeygi et al. [2].

Keywords

Elliptic Problem Integration Domain Correction Function Coarse Cell Pressure Poisson Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the laplace and heat equations on arbitrary domains with applications to the stefan problem. J. Comp. Phys. 202, 577–601 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hajibeygi, H., Bonfigli, G., Hesse, M.A., Jenny, P.: Iterative multiscale finite-volume method. J. Comp. Phys. 277, 8604–8621 (2008)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)zbMATHCrossRefGoogle Scholar
  4. 4.
    Linnick, M., Fasel, H.: A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comp. Phys. 204, 157–192 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Peller, N., Duc, A.L., Tremblay, F., Manhart, M.: High-order stable interpolation for immersed boundary methods. Int. J. Num. Meth. Fluids 52, 1175–1193 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comp. Phys. 10, 252–271 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bonfigli, G., Jenny, P.: An efficient multi-scale poisson solver for the incompressible navier-stokes equations with immersed boundaries. J. Comp. Phys. 277, 8604–8621 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giuseppe Bonfigli
    • 1
  • Patrick Jenny
    • 1
  1. 1.ETH ZurichZurichSwitzerland

Personalised recommendations