Skip to main content

Turbulence Modeling and Detached Eddy Simulation with a High-Order Unstructured Discontinuous Galerkin Code

  • Conference paper
New Results in Numerical and Experimental Fluid Mechanics VII

Summary

In the present paper a high-order Discontinuous Galerkin method is presented for the numerical simulation of the separated turbulent flow around complex geometries using unstructured grids. Bassi and Rebay extended the Discontinuous Galerkin method to solve the Navier-Stokes equations for laminar and 3D turbulent flows. Especially, an extension will be provided to calculate unsteady separated flows with a Detached Eddy Simulation, which is a hybrid method between the Unsteady Reynolds averaged Navier-Stokes approach and the Large Eddy Simulation. Some results, like flows over a flat plate and around a sphere, which could not be predicted with an Unsteady Reynolds averaged Navier-Stokes calculation, are calculated with high accuracy and compared with theory and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achenbach, E.: Experiments on the flow past spheres at very high Reynolds numbers. Journal of Fluid Mechanics 54, 565–575 (1972)

    Article  Google Scholar 

  2. Bassi, F., Rebay, S.: A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations. Journal of Computational Physics 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bassi, F., Rebay, S.: High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations. Journal of Computational Physics 138, 251–285 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flows. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods, pp. 77–88. Springer, Heidelberg (2000)

    Google Scholar 

  5. Bassi, F., Rebay, S.: Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k- ω turbulence model equations. Computers & Fluids 34, 507–540 (2005)

    Article  MATH  Google Scholar 

  6. Constantinescu, G.S., Squires, K.D.: LES and DES Investigations of Turbulent Flow over a Sphere. In: 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA–Paper 2000-0540 (2000)

    Google Scholar 

  7. Landmann, B.: A parallel discontinouous Galerkin code for the Navier-Stokes and Reynolds-averaged Navier-Stockes equations. PhD thesis, University of Stuttgart (2008)

    Google Scholar 

  8. Lübon, C., Keßler, M., Wagner, S.: A Parallel CFD Solver Using the Discontinuous Galerkin Approach. In: High Perfomace Computing in Science and Engineering, pp. 291–302. Springer, Heidelberg (2008)

    Google Scholar 

  9. Lübon, C., Keßler, M., Wagner, S., Krämer, E.: Detached Eddy Simulation of Separated Flow on a High-Lift Device and Noise Propagation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 97, pp. 192–201. Springer, Heidelberg (2007)

    Google Scholar 

  10. Lübon, C., Wagner, S.: Three-Dimensional Discontinuous Galerkin Codes to Simulate Viscous Flow by Spatial Discretization of High Order and Curved Elements on Unstructured Grids. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, pp. 145–153. Springer, Heidelberg (2007)

    Google Scholar 

  11. Nguyen, N.C., Persson, P.-O., Peraire, J.: RANS Solutions Using High Order Discontinuous Galerkin Methods. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA–Paper 2007-0914 (2007)

    Google Scholar 

  12. Schlichting, H.: Grenzschicht-Theorie. Braun, Karlsruhe (1982)

    Google Scholar 

  13. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1, 5–21 (1994)

    Google Scholar 

  14. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES (1997)

    Google Scholar 

  15. Travin, A., Shur, M., Strelets, M., Spalart, P.: Detached-eddy simulation past a circular cylinder. Flow, Turbulence and Combustion 63, 293–313 (2000)

    Article  MATH  Google Scholar 

  16. van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. Efficient flux quadrature. Computer Methods in Applied Mechanics and Engineering 191, 4747–4780 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lübon, C., Kessler, M., Wagner, S. (2010). Turbulence Modeling and Detached Eddy Simulation with a High-Order Unstructured Discontinuous Galerkin Code. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, HP., Nitsche, W., Schröder, W. (eds) New Results in Numerical and Experimental Fluid Mechanics VII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14243-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14243-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14242-0

  • Online ISBN: 978-3-642-14243-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics