Advertisement

Application of the Immersed Boundary Method for the Simulation of Incompressible Flows in Complex and Moving Geometries

  • Eike Hylla
  • Octavian Frederich
  • Johannes Mauß
  • Frank Thiele
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

A new variant of the Immersed Boundary Method (IBM) has been implemented into an established flow solver. Important aspects of the implementation towards the application of this approach for flow simulations in complex and moving geometries are characterised. Simple validation test cases are addressed first, followed by a moving boundary example and more complex geometries like the Weibel lung model.

Keywords

Incompressible Flow Strouhal Number Cartesian Grid Immerse Boundary Method Wall Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peskin, C.S.: Flow patterns around heart valves: a numerical method. Journal of Computational Physics 10, 252–271 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Peskin, C.S.: The immersed boundary method. Acta Numerica, pp. 479–512. Cambridge University Press, Cambridge (2002)Google Scholar
  3. 3.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annual Review of Fluid Mechanics 37, 239–261 (2005)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Tseng, Y., Ferziger, J.H.: A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Phyics 192(2), 593–623 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hylla, E.: Validierung und Erweiterung eines numerischen Verfahrens zur Simulation von inkompressiblen Strömungen mittels der Immersed Boundary Methode. Diploma Thesis, ISTA TU-Berlin (2008)Google Scholar
  6. 6.
    Xue, L.: Entwicklung eines effizienten parallelen Lösungsalgorithmus zur dreidimensionalen Simulation komplexer turbulenter Strömungen. PhD Thesis, TU-Berlin (1998)Google Scholar
  7. 7.
    Smailbegovic, F.S., Gaydadjiev, G.N., Vassiliadis, S.: Sparse Matrix Storage Format. In: Proceedings of the 16th Annual Workshop on Circuits, Systems and Signal Processing, pp. 445–448 (2005)Google Scholar
  8. 8.
    Zdravkovich, M.M.: Flow Around Circular Cylinders. Fundamentals, vol. 1. Oxford Science Publications (1997)Google Scholar
  9. 9.
    Okajima, A.: Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics 123, 379–389 (1982)CrossRefGoogle Scholar
  10. 10.
    Frederich, O., Amtsfeld, P., Hylla, E., Thiele, F., Puderbach, M., Kauczor, H.-U., Wegener, I., Meinzer, H.-P.: Numerical Simulation and Analysis of the Flow in Central Airways. In: Proceedings of STAB 2008. NNFM. Springer, Heidelberg (to be published, 2009)Google Scholar
  11. 11.
    Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963)Google Scholar
  12. 12.
    Nowak, N., Kakade, P., Annapragada, A.: Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs. Annals of Biomedical Engineering 31, 374–390 (2002)CrossRefGoogle Scholar
  13. 13.
    Kabilan, S., Lin, C., Hoffman, E.: Characteristics of airflow in a CT-based ovine lung: a numerical study. Journal of Applied Physiology 102, 1469–1482 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eike Hylla
    • 1
  • Octavian Frederich
    • 1
  • Johannes Mauß
    • 1
  • Frank Thiele
    • 1
  1. 1.Institute of Fluid Mechanics and Engineering AcousticsBerlin Institute of TechnologyBerlinGermany

Personalised recommendations