Advertisement

Interfacial Area Transport Equation in Statistical-Eulerian-Eulerian Simulations of Multiphase Flow

  • Daniel T. Banuti
  • Klaus Hannemann
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

This paper discusses the ongoing extension of the DLR TAU Code with a multiphase flow model. The reasoning behind choosing a Statistical Eulerian Eulerian (SEE) model with Interfacial Area Transport Equation (IATE) is covered. Properties of the model are introduced, especially concerning the less known IATE concept which provides information about interphasic interfacial area (IA) available in a computational cell. This allows for a more elaborate sub grid scale modeling. An general IA convection velocity is derived which holds for the limiting cases of stratified flow and disperse flow. As an exemplary application, the development of a spray injection IATE is discussed. This includes interfacial growth due to velocity gradients and a new IA detection term which resolves ambiguities with boundary conditions.

Keywords

Shear Layer Reynolds Average Navier Stokes Interfacial Area Reynolds Average Navier Stokes Convection Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banuti, D.T., Karl, S., Hannemann, K.: Interfacial Area Modeling for Eulerian Spray Simulations in Liquid Rocket Engines. AIAA 2008-5231 (2008)Google Scholar
  2. 2.
    Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code. AIAA 97-0167 (1997)Google Scholar
  3. 3.
    Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase-Flow. Springer, Heidelberg (2006) ISBN 0-387-28321-8Google Scholar
  4. 4.
    Liou, M.-S.: A Sequel to AUSM: AUSM+. Journal of Computational Physics 129, 364–382 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jay, S., Lacas, F., Candel, S.: Combined surface density concepts for dense spray combustion. Combustion and Flame 144, 558–577 (2006)CrossRefGoogle Scholar
  6. 6.
    Mack, A., Hannemann, V.: Validation of the Unstructured DLR TAU-Code for Hypersonic Flows. AIAA 2002-3111 (2002)Google Scholar
  7. 7.
    Mayer, W., Schik, A., Schäffler, M., Tamura, H.: Injection and Mixing Processes in High-Pressure Liquid Oxygen/Gaseous Hydrogen Rocket Combustors. Journal of Propulsion and Power 16(5), 823–828 (2000)CrossRefGoogle Scholar
  8. 8.
    Paillère, H., Corre, C., García Cascales, J.R.: On the extension of the AUSM+ scheme to compressible two-fluid models. Computers & Fluids 32, 891–916 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Preclik, D., Knab, O., Görgen, J., Hagemann, G.: Simulation and Analysis of Thrust Chamber Flowfields: Cryogenic Propellant Rockets. In: AIAA Progress in Astronautics and Aeronautics, 2006, Liquid Rocket Thrust Chambers (2006) ISBN-13: 978-1563472237Google Scholar
  10. 10.
    Vallet, A., Burluka, A.A., Borghi, R.: Development of a Eulerian model for the “atomization” of a liquid jet. Atomization and Sprays 11, 619–642 (2001)Google Scholar
  11. 11.
    Wörner, M.: A Compact Introduction to the Numerical Modeling of Multiphase Flows. Forschungszentrum Karlsruhe, Wissenschaftliche Berichte FZKA 6932 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel T. Banuti
    • 1
  • Klaus Hannemann
    • 1
  1. 1.German Aerospace Center DLRInstitute of Aerodynamics and Flow TechnologyGöttingenGermany

Personalised recommendations