Skip to main content

Geological Indicators

  • Chapter
  • First Online:
Exploration of Gas Hydrates

Abstract

Marine sediments on the continental slopes require appropriate thickness of sea, methane-generating potential and suitable pressure–temperature regime in order to host gas hydrates. In addition to pressure and geothermal gradient other variables affecting the stability of gas hydrates are the hydrothermal gradient, sediment's thermal conductivity, and heat flow. Other variables such as gas composition, migration pathways for gas and water, seals and reservoir rocks, and pore water salinity are also important for establishing the stability zone for hydrates. Gas hydrate rich provinces can be characterized by different geological indicators like development of hydrate mounds, pockmark depressions, mud volcanism, fault structures and fracture zones. These geological processes can shape a potential gas hydrate reservoir. Field evidence indicates that anomalously warm, presumably methane rich fluids can rise as conduits in the gas hydrate areas. This chapter presents a review and synthesis of the tectono-sedimentary controls on gas hydrate occurrence and aim to establish geological framework for the occurrence of gas hydrates in the continental margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auzende, J.M., Van de Beuque, S., Dickens, G., François, C., Lafoy, Y., Voutay, O., Exon, N., 2000. Deep sea diapirs and BSR in Fairway Basin (Southwest Pacific). Marine Geophysical Research 21, 579–587.

    Article  Google Scholar 

  • Baba, K., Yamada, T., 2004. BSRs and associated reflections as an indicator of gas hydrate and free gas accumulation: an example of accretionary prism and forearc basin system along the Nankai Trough, off central Japan. Resource Geology 54, 11–24.

    Article  Google Scholar 

  • Barker, P.F., 1982. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge crest–trench interactions. Journal of the Geological Society of London, 139, 787–801.

    Article  Google Scholar 

  • Barker, D.H.N., Austin, Jr., J.A., 1994. Crustal diaprism in Bransfield Strait, West Antarctica: evidence for distributed extension in marginalbasin formation. Geology 22, 657–660.

    Article  Google Scholar 

  • Barnes, P.M., et al., 2009. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geology doi:10.1016/j.margeo. 2009.03.012.

    Google Scholar 

  • Buenz, S., Mienert, J., Vanneste, M., Andreassen, K., 2005. Gas hydrates at the Storegga Slide: constraints from an analysis of multicomponent, wide-angle seismic data. Geophysics 70, B19–B34.

    Google Scholar 

  • Bunz, S., Mienert, J., Berndt, C., 2003. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth and Planetary Science Letters 209, 291–307.

    Article  Google Scholar 

  • Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology 24(11), 1025–1028.

    Article  Google Scholar 

  • Charlou, J.L., Donval, J.P., Zitter, T., Roy, N., Jean-Baptiste, P., Foucher, J.P., Woodside, J., MEDINAUT Scientific Party, 2003. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep-Sea Research, Part I 50, 941–958.

    Article  Google Scholar 

  • Clennell, M.B., Hovland, M., Booth, J.S., Henry, P., Winters, W.J., 1999. Formation of natural gas hydrates in marine sediments. Part 1: Conceptual model of gas hydrate growth conditioned by host sediment properties. Journal of Geophysical Research B 104, 22985–23003.

    Article  Google Scholar 

  • Colwell, F., Matsumoto, R., Reed, D., 2004. A review of the gas hydrates, geology, and biology of the Nankai Trough. Chemical Geology 205, 391–404.

    Article  Google Scholar 

  • Cook, A.E., Goldberg, D., 2007. Gas hydrate filled fracture distribution, eastern Indian continental margin. American Geophysical Union Fall Meeting, San Francisco, CA, AN, OS11C-04.

    Google Scholar 

  • Dillon, W.P., Grow, J.A., Paull, C.K., 1980. Unconventional gas hydrate seals may trap gas oft southeast US. Oil and Gas Journal 78, 124–130.

    Google Scholar 

  • Gieskes, J.M., Vrolijk, P., Blanc, G., 1990. Hydrogeochemistry of the Northern Barbados accretionary complex transect: Ocean Drilling Program Leg 110. Journal of Geophysical Research 95(B6), 8809–8818.

    Article  Google Scholar 

  • Ginsburg, G.D., Ivanov, V.L., Soloviev, V.A., 1984. Natural gas hydrates of the world’s oceans. Oil and gas content of the world’s oceans. PGO Sevmorgeologia, 141–158.

    Google Scholar 

  • Guo, J.H., Wu, S.G., Xu, N., Fan, F.X., 2007. Structural characteristics of gas hydrates deposition in the west slope of the Okinawa Trough and its adjacent area. Oceanologia Et Limnologia Sinica 38(5), 432–437.

    Google Scholar 

  • Haq, B.U., 2003. Climatic impact of natural gas hydrate. in: M.D. Max, (Ed.),Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer, The Netherlands, pp. 137–147.

    Chapter  Google Scholar 

  • Hasiotis, T., Papatheodorou, G., Kastanos, N., Ferentinos, G., 1996. A pockmark field in the Patras gulf (Greece) and its activation during the 14.7.93 seismic event. Marine Geology 130, 333–344.

    Article  Google Scholar 

  • Henry, P., Thomas, M., Clennell, M.B., 1999. Formation of natural gas hydrates in marine sediments. Part 2: Thermodynamic calculations of stability conditions in porous sediments. Journal of Geophysical Research B 104, 23005–23022.

    Article  Google Scholar 

  • Hernry, P., Le Pichon, X., Lallemant, S., Lance, S., Martin, J.B., Foucher, J.P., Fiala-Medioni, A., Rostek, F., Guilhaumou, N., Pranal, V., Castrec, M., 1996. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. Journal of Geophysical Research 101, 20297–20323.

    Article  Google Scholar 

  • Higgins, G.E., Saunders, J.B., 1973. Mud volcanoes-their nature and origin: contribution to the geology and paleobiology of the Carribbean and adjacent areas. Verhandlungen der Naturforschenden Gesellschaft in Basel 84, 101–152.

    Google Scholar 

  • Hovland, M., Svendsen, H., 2006. Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea. Marine Geology 228, 15–23.

    Article  Google Scholar 

  • Hovland, M., Svensen, H., Forsberg, C.F., Johansen, H., Fichler, C., FossĂĄ, J.H., Jonsson, R., RueslĂĄtten, H., 2005. Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Marine Geology 218, 191–206.

    Article  Google Scholar 

  • Hyndman, R., Davis, E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research 97, 7025–7041.

    Article  Google Scholar 

  • Jin, X.L., Yu, P.Z., 1987. Structural characteristics of Okinawa Trough. Science in China (Ser. B) 17(2), 196–203.

    Google Scholar 

  • Kennett, J.P., 2002. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. American Geophysical Union, Washington, DC.

    Google Scholar 

  • Kvenvolden, K.A., 1993. Gas hydrates — geological perspective and global change. Review of Geophysics 31, 173–187.

    Article  Google Scholar 

  • Lance, S., Henry, P., Le Pichon, X., Lallemant, S., Chamley, H., Rostek, F., Faugeres, J.C., Gonthier, E., Olu, K., 1998. Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rheology. Marine Geology 145, 255–292.

    Article  Google Scholar 

  • Langseth, M.G., Moore, J.C., 1990. Fluids in accretionary prisms, EOS 71, 245–246.

    Article  Google Scholar 

  • Lee, C.S., Shor, Jr., G.G., Bibee, L.D., Lu, R.S., Hilde, T.W.C., 1980. Okinawa Trough: origin of a back-arc basin. Marine Geology 35, 219–241.

    Article  Google Scholar 

  • Letouzey, J., Kimura, M., 1986. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics 125, 209–230.

    Article  Google Scholar 

  • Lin, C.-C., Tien-Shun Lin, A., Liu, C.-S., Chen, G.-Y., Liao, W.-Z., Schnurle, P. 2009. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Marine and Petroleum Geology 26(7), 1118–1131.

    Article  Google Scholar 

  • Long, D., Lovell, M.A., Rees, J.G., Rochelle, C.A., 2009. Sediment-hosted gas hydrates; new insights on natural and synthetic systems (in Sediment-hosted gas hydrates; new insights on natural and synthetic systems). Geological Society Special Publications, 319, 1–9.

    Google Scholar 

  • Ludmann, T., Wong, H.K., 2003. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the north-western Sea of Okhotsk. Marine Geology 201, 269–286.

    Article  Google Scholar 

  • Lykousis, V., Alexandri, S., Woodside, J., et al., 2009. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Mar Petrol Geol 26, 854–872.

    Google Scholar 

  • MacKay, M.E., Jarrad, R.D., Westbrook, G.K., Hyndmann, R.D., and the Shipboard Scientific Party of ODP leg 146, 1994, Origin of bottom simulating reflectors: Geophysical Evidence from the Cascadia Accretionary prism, Geology 22, 459–462.

    Google Scholar 

  • MacLeod, M.K., 1982. Gas hydrates in ocean bottom sediments. American Association Petroleum Geologists Bulletin 66, 2649–2662.

    Google Scholar 

  • Malone, R., 1985. Gas Hydrates Topical Report, DOE/METC/SP-218 (DE85001986). Department of Energy, Morgantown Energy Technology Center, USA.

    Google Scholar 

  • Marchesi, J.R., Weightman, A.J., Cragg, B.A., Parkes, R.J. and Fry, J.C., 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiology Ecology 34, 221–228.

    Article  Google Scholar 

  • McConnell, D.R., Kendall, B.A., 2003. Images of the base of gas hydrate stability in the deepwater Gulf of Mexico and implications for successful well planning. The Leading Edge 22(4), 361–367.

    Article  Google Scholar 

  • Mienert, J., Posewang, J., Baumann, M. (1998). Gashydrates along the northeastern Atlantic margin:possible hydrate-bound margin instabilities and possiblerelease of methane. in: J.-P. Henriet, J. Mienert (Eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change, Geological Society Special Publication, London, 137, pp. 275–291.

    Google Scholar 

  • Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167, 29–42.

    Article  Google Scholar 

  • Moore, G.F., Shipley, T.H., Stoffa, P.L., Karig, D.E., Taira, A., Kuramoto, S., Tokuyama, H., and Suyehiro, K., 1990, Structure of the Nankai Trough accretionary zone from multichannel seismic reflection data: Journal of Geophysical Research, v. 95, p. 8753–8765.

    Google Scholar 

  • Moore, G.F., Shipley, T.H., Stoffa, P.L., Karig, D.E., Taira, A., Kuramoto, S., Tokuyama, H.,Moore, J.C., Moore, G.F., Cochrane, G.R., Tobin, H.J., 1995. Negative-polarity seismicmultichannel seismic reflection data. Journal of Geophysical Research, 95, 8753–8765.

    Article  Google Scholar 

  • Ning, X., Shiguo, W., et al., 2009. Gas hydrate associated with mud diapirs in southern Okinawa Trough. Marine and Petroleum Geology 26(8), 1413–1418.

    Article  Google Scholar 

  • Paull, C.K., Speiss, F.N., Ussler, III, W., Borowski, W.S., 1995. Methane rich plumes on the Caroline continental rise: associations with gas hydrates. Geology 23, 89–92.

    Article  Google Scholar 

  • Paull, C.K., Ussler, III, W., Dillon, W.P., 2000. Potential role of gas hydrate decomposition in generating submarine slope failures, in: M.D. Max (Ed.), Natural Gas Hydrate in Oceanic Permafrost Environments, Coastal Systems and Continental Margins 5, Kluwer, Dordrecht, pp. 149–156.

    Google Scholar 

  • Qin, Y.S., Zhao, Y.Y., Chen, L.R., Zhao, S.L., 1987. Geology of the East China Sea. Science Press, Beijing, 290 pp.

    Google Scholar 

  • Rajput, S., 2008. Analysis of Ocean Bottom Seismometer data for gas hydrate studies and subsurface models. Ph.D Dissertation, Kurukshetra University Kurukshetra.

    Google Scholar 

  • Schmuck, E.A., Paull, C.K., 1993. Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear slide. Geo-Marine Letters 13, 145–152.

    Article  Google Scholar 

  • Schnurle, P., Wang, C., 1998. Okinawa Trough back-arc basin: early tectonic and magmatic evolution. Journal of Geophysical Research 103(B12), 30245–30267.

    Article  Google Scholar 

  • Shipley, T.H., Stoffa, P.L., Dean, D.F., 1990. Underthrust sediments, fluid migration paths, and mud volcanoes associated with the accretionary wedge off Costa Rica: Middle American Trench, Journal of Geophysical Research 95, 8743–8752.

    Article  Google Scholar 

  • Shipley, T.H., Ogawa, Y., Blum, P., (Eds.) 1995. Proc. Ocean Drilling Prog., Init. Rep., 156, 301 pp.

    Google Scholar 

  • Sibuet, J.C., Deffontaines, B., Hsu, S.K. et al., Okinawa trough back arc basin: Early tectonic and magnetic evolution, Journal of Geophysical Research, 1998, 103: 30245–30267.

    Google Scholar 

  • Sloan, E.D., 1998. Clathrate Hydrates of Natural Gases, 2nd ed. Marcel Dekker, Inc., New York, pp. 75–76.

    Google Scholar 

  • Spence, G.D., Hyndman, R.D., Chapman, N.R., Riedel, M., Edwards, N., Yuan, J., 2003. Cascadia Margin, Northeast Pacific Ocean: hydrate distribution from geophysical investigations. in: M.D. Max (Ed.),Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer, The Netherlands, pp. 183–198.

    Chapter  Google Scholar 

  • Suyehiro, K., 1990. Structure of the Nankai Trough accretionary zone from reflections along faults of the Oregon accretionary prism: indicators of overpressuring. Journal of Geophysical Research 100, 12895–12906.

    Google Scholar 

  • Talukder, A.R., Bialas, J., Klaeschen, D., Brueckmann, W., Reston, T., Petersen, J. 2008. Tectonic framework of the mud mounds, associated BSRs and submarine landslides, offshore Nicaragua Pacific margin. Journal of the Geological Society 165, 167–176.

    Article  Google Scholar 

  • Tucker, P.M., & Yortson, H., J., 1973, Pitfalls in Seismic Interpretation, Soc. Explor. Geophys. Mono. Ser. No. 2

    Google Scholar 

  • Xu, W., Ruppel, C., 1999. Predicting the occurrence, distribution and evolution of methane gas hydrate in porous sediments. Journal of Geophysical Research 104, 5081–5095.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar Thakur .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thakur, N.K., Rajput, S. (2011). Geological Indicators. In: Exploration of Gas Hydrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14234-5_5

Download citation

Publish with us

Policies and ethics