Behavior of Enzymatic Activity in Chilean Volcanic Soil and Their Interactions with Clay Fraction

  • Analí RosasEmail author
  • Ada López
  • Roxana López
Part of the Soil Biology book series (SOILBIOL, volume 22)


Volcanic soil, Andisols, and Ultisols comprise clays with physico-chemical differences, which is crucial for the immobilization of enzymes and their catalytic properties. The properties of volcanic soils related to enzyme immobilization are described. Specifically, the characteristics of allophane, the predominant clay in Andisols, and kaolinite, the most representative clay in Ultisols, are considered. The mechanisms by which enzymes are immobilized in Andisol and Ultisol clays are described, with particular emphasis on acid phosphatase. In addition, the values of enzyme activities in volcanic soil affected by management practices such as tillage system, application of herbicides, and manganese (Mn) and molybdenum (Mo) micronutrient application are reported.


Acid Phosphatase Enzyme Immobilization Free Enzyme Immobilization Process Volcanic Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison S (2006) Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochemistry 81:361–373CrossRefGoogle Scholar
  2. Alvear M, Pino M, Castillo C, Trasar-Cepeda C, Gil-Sotres F (2006) Effect of non-tillage on some biological activities in an Alfisol from Southern Chile. J Soil Sci Plant Nutr 6:38–53Google Scholar
  3. Alvear M, Urra C, Huaiquilao R, Astorga M, Reyes F (2007) Actividades biológicas y estabilidad de agregados en un suelo del bosque templado chileno bajo dos etapas sucesionales y cambios estacionales. R C Suelo Nutr Veg 7(3):38–50, J Soil Sc Plant Nutr 7(3):38–50Google Scholar
  4. Aomine S, Wada K (1962) Differential weathering of volcanic ash and pumice resulting in formation of hydrated halloysite. Am Mineral 47:1024–1048Google Scholar
  5. Bates T, Hildebrand F, Swineford A (1950) Morphology and structure of endelite and halloysite. Am Mineral 35:463–484Google Scholar
  6. Besoaín E (1985) Los suelos. In: Tosso J (ed) Suelos Volcánicos de Chile. Instituto de Investigaciones Agropecuarias (INIA), Santiago, pp 23–106Google Scholar
  7. Boudot JP, Hadj BAB, Chrone T (1986) Carbon mineralization in Andosols and aluminium-rich highland soils. Soil Biol Biochem 18:457–461CrossRefGoogle Scholar
  8. Bozzo G, Raghothama K, Plaxton W (2002) Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Eur J Biochem 269:6278–6286PubMedCrossRefGoogle Scholar
  9. Chevallier T, Woignier T, Toucet J, Blanchart E, Dieudonné P (2008) Fractal estructure in natural gels: effect on carbon sequestration in volcanic soil. Sol-Gel Sci Technnol 48:231–238CrossRefGoogle Scholar
  10. Churchman G, Davy T, Aylmore L, Gilkes R, Self P (1995) Characteristics of fine pores in some halloysites. Clay Miner 30:89–98CrossRefGoogle Scholar
  11. Denaix L, Lamy I, Botero JY (1999) Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors. Colloid Surf A 158:315–325CrossRefGoogle Scholar
  12. Dietler G, Aubert C, Cannell DS, Wiltzius LP (1986) Gelation of colloidal silica. Phys Rev Lett 57:3117PubMedCrossRefGoogle Scholar
  13. Dodor D, Hwang H, Ekunwe S (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzym Microb Technol 35:210–217CrossRefGoogle Scholar
  14. Eggers DK, Valentine JS (2001) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10:250–261PubMedCrossRefGoogle Scholar
  15. Emmerling A, Fricke J (1992) Small angle scattering and the structure of aerogels. J Non-Cryst Solids 145:113–120CrossRefGoogle Scholar
  16. Farmer VC, Smith BFL, Tait JM (1977) Alteration of allophane and imogolite by alkaline digestion. Clay Miner 12:195–198CrossRefGoogle Scholar
  17. Feller C, Albrecht A, Blanchart E, Cabidoche YM, Chevallier T, Hartmann C, Eschenbrenner V, Larre-Larrouy MC, Ndandou JF (2001) Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edafic determinants for Lesser Antilles soils. Nutr Cycl Agroecosys 61:19–31CrossRefGoogle Scholar
  18. Fieldes M (1955) Allophane and related mineral colloids. N Z J Sci Tech 37:336–350Google Scholar
  19. Fiorito T, Icoz I, Stotzky G (2008) Adsorption and binding of the transgenic plant proteins, human serum albumin, β-glucuronidase, and Cry3Bb1, on montmorillonite and kaolinite: microbial utilization and enzymatic activity of free and clay-bound proteins. Appl Clay Sci 39:142–150CrossRefGoogle Scholar
  20. Galindo G, Escudey M (1985) Interacciones superficie-solución en suelos volcánicos y sus componentes. In: Tosso J (ed) Suelos Volcánicos de Chile. Instituto de Investigación Agropecuaria (INIA). Ministerio de Agricultura, Santiago, Chile, pp 303–333Google Scholar
  21. Gianfreda L, Bollag JM (1994) Effect of soils on the behavior of immobilized enzymes. Soil Sci Soc Am J 58:1672–1681CrossRefGoogle Scholar
  22. Gianfreda L, Scarfi MR (1991) Enzyme stabilization: state of the art. Mol Cell Biochem 199:97–128Google Scholar
  23. Gianfreda L, Rao MA, Saccomandi F, Sannino F, Violante A (2002) Enzymes in soil: properties, behavior and potential applications. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Soil mineral-organic matter-microorganism interactions and ecosystem health. Development in soil science 28B. Elsevier, London, pp 301–328CrossRefGoogle Scholar
  24. Gill I (2001) Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem Mater 13:3404–3421CrossRefGoogle Scholar
  25. Huang Q, Shindo H (2000) Effects of copper on the kinetics of free and immobilized acid phosphatase. Soil Biol Biochem 32:1885–1892CrossRefGoogle Scholar
  26. Huang Q, Liang W, Cai P (2005) Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloid Surf B 45:209–214CrossRefGoogle Scholar
  27. Jara A, Violante A, Pigna M, Mora M (2006) Mutual interactions of Sulfate, oxalate, citrate, and phosphate on synthetic and natural allophanes. Soil Sci Soc Am J 70:337–346CrossRefGoogle Scholar
  28. Kelleher BP, Simpson AJ, Willeford OK, Simpson MJ, Stout R, Rafferty A, Kingery WL (2004) Acid phosphatase interactions with organo-mineral complexes: influence on catalytic activity. Biogeochemistry 71:285–297CrossRefGoogle Scholar
  29. López R (2006) Evaluación del efecto de molibdeno sobre algunos parámetros bioquímicos del suelo y la planta en andisoles del sur de Chile Tesis para optar al grado de Doctor en Ciencias de Recursos Naturales. Universidad de La Frontera, Temuco, ChileGoogle Scholar
  30. López R, Alvear M, Gianfreda L, Mora M (2007) Molybdenum availability in Andisols and its effect on biological parameters of soils and red clover (Trifolium pratense L.). Soil Sci 172(11):913–924Google Scholar
  31. López R, Rosas A (2008) Effect of acid phosphatase immobilized in allophanic clay on P availability in soil. J Soil Sci Plant Nutr 8:201–202Google Scholar
  32. López R, Rosas A, Rao M, Mora ML, Alvear M, Gianfreda L (2007) Manganese and molyldenum affect acid phophatases from potato. Acata Agr Scand BS P 57:65–73Google Scholar
  33. Lozzi I, Calamai L, Fusi P, Bosetto M, Stotzky G (2001) Interaction of horseradish peroxidase with montmorillonite homoionic to Na+and Ca2+: effects on enzymatic activity and microbial degradation. Soil Biol Biochem 33:1021–1028CrossRefGoogle Scholar
  34. Luckarift HR, Spain JC, Naik RR, Stone M (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213Google Scholar
  35. Matus F, Garrido E, Sepúlveda N, Cárcamo I, Panichini M, Zagal E (2008) Relationship between extractable Al and organic C in volcanic soil of Chile. Geoderma 148:180–188CrossRefGoogle Scholar
  36. Mayer LM, Schick LL, Hardy K, Wagai R, McCarthy J (2004) Organic matter content of small mesopores in sediments and soils. Geochim Cosmochim Acta 68:3863–3872CrossRefGoogle Scholar
  37. Olczack M, Morawiecka B, Watorek W (2003) Plant purple acid phosphatases-genes, structures and biological function. Acta Biochim Pol 50:1245–1257Google Scholar
  38. Parfitt RL (1990) Allophane in New Zealand – a review. Aust J Soil Res 28:343–360CrossRefGoogle Scholar
  39. Parfitt RL, Yuan G, Theng BKG (1999) A 13C-NMR study of the interactions of soil organic matter with aluminium and allophane in podzols. Eur J Soil Sci 50:695–700CrossRefGoogle Scholar
  40. Rao MA, Gianfreda L (2000) Properties of acid phosphatase-tannic acid complexes formed in the presence of Fe and Mn. Soil Biol Biochem 32:1921–1926CrossRefGoogle Scholar
  41. Rao MA, Gianfreda L, Palmiero F, Violante A (1996) Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes. Soil Sci 11:751–760CrossRefGoogle Scholar
  42. Rao MA, Violante A, Gianfreda L (2000) Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol Biochem 32:1007–1014CrossRefGoogle Scholar
  43. Redel Y, Rubio R, Rouanet J, Borie F (2007) Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma 139:388–396CrossRefGoogle Scholar
  44. Redel Y, Rubio R, Godoy R, Borie F (2008) Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems. Geoderma 145:216–221CrossRefGoogle Scholar
  45. Reetz MT, Tielman P, Wisenhöfer W, Könen W, Zonta A (2003) Second generation sol-gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728CrossRefGoogle Scholar
  46. Rosas A (2006) Evaluación del efecto del manganeso sobre parámetros bioquímicos de la planta y del suelo en sistemas modelo. Tesis para optar al grado de Doctor en Ciencias de Recursos Naturales. Universidad de La Frontera, Temuco, ChileGoogle Scholar
  47. Rosas A, Mora M, Jara A, López R, Rao M, Gianfreda L (2008) Catalytic of acid phosphatase immobilized on natural supports in the presence of mangase or molybdenum. Geoderma 145:77–83CrossRefGoogle Scholar
  48. Schaeffer W, Keefer KD (1986) Structure of Random Porous Materials: Silica Aerogel. Phys Rev Lett 56:2199–2202Google Scholar
  49. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedCrossRefGoogle Scholar
  50. Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weld SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp 379–438Google Scholar
  51. Shchipunov YA, Karpenko TY, Bakunina IY, Burtseva YV, Zvyagintseva TN (2004) A New precursor for the immobilization of enzymes incide sol-gel derived hibrid silica nanocomposites containing polysaccharides. J Biochem Bioph Meth 58:25–38CrossRefGoogle Scholar
  52. Shindo H, Watanabe D, Onaga T, Urakawa M, Nakahara O, Huang Q (2002) Adsorption, activity and stability of acid phosphatase as influenced by selected inorganic soil components. Soil Sci Plant Nutr 48:763–767CrossRefGoogle Scholar
  53. Sieffermann G, Millot G (1969) Equatorial and tropical weathering of recent basalts from cameroun allophanes, halloysita, metahalloysita, kaolinite and gibbsite. Intern Clay Conf 1:417–430Google Scholar
  54. Sparks DL (1995) Environmental soil chemistry. Academic, San DiegoGoogle Scholar
  55. Stauton S, Quiquampoix H (1994) Adsorption and conformation of bovine serum albumin on montmorillonite: Modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation. J Colloid Interf Sci 166:89–94CrossRefGoogle Scholar
  56. Tso S, Chen Y (1997) Isolation and characterization of a group III isozyme of acid phosphatase from rice plants. Bot Bull Acad Sinica 38:245–250Google Scholar
  57. Vacher R, Woignier T, Pelous J (1988) Structure and self-similarity of silica aerogels. Phy Rev B 37:6500–6503CrossRefGoogle Scholar
  58. Violante A, Krishnamurti GSR, Huang PM (2002) Impact of organic substances on the formation of metal oxides in soil environments. In: Huang PM (ed) Interactions between soil particles and microorganism and their impact on the terrestrial environment. Wiley, New York, pp 133–188Google Scholar
  59. Wada KJ (1985) The distinctive properties of Andosols. Springer, HeidelbergGoogle Scholar
  60. Wada K (1989) Allophane and immogolite. In: Dixon JB, Weld SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp 1051–1087Google Scholar
  61. Wang WJ, Dalal RC, Moody PW, Smith CJ (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284CrossRefGoogle Scholar
  62. Wei Y, Xu J, Feng Q, Lin M, Dong H, Zhang W, Wang C (2001) A novel method for enzyme immobilization: direct encapsulation of acid phosphatase in nanoporus silica host materials. J Nanosci Nanotechnol 1:83–93PubMedCrossRefGoogle Scholar
  63. Woignier T, Braudeau E, Doumenc H, Rangon L (2005) Supercritical drying applied to natural “gels”: allophanic soils. J Sol-Gel Sci Technol 36:61–68CrossRefGoogle Scholar
  64. Woignier T, Primera J, Hashmy A (2006) Application of the DLCA model to “natural” gel: the allophanic soils. J Sol-Gel Sci Technol 40:201–207CrossRefGoogle Scholar
  65. Woignier T, Pochet G, Doumenc H, Dieudonné P, Duffours L (2007) Allophane: a natural gel in volcanic soils with interesting environmental properties. J Sol-Gel Sci Technnol 41:25–30CrossRefGoogle Scholar
  66. Yasuhisa Y, Karube J (1999) Application of a scaling law to the analysis of allophane aggregates. Colloid Surface A 151:43–47CrossRefGoogle Scholar
  67. Yenugün B, Güvenilir Y (2003) Partial purification and kinetic characterization of acid phosphatase from garlic seedling. Appl Biochem Biotech 107:677–687CrossRefGoogle Scholar
  68. Zambonelli C, Roberts MF (2003) An iron-dependent bacterial phospholipase D reminiscent of purple acid phosphatases. J Biol Chem 278:13706–13711PubMedCrossRefGoogle Scholar
  69. Zunino H, Borie F, Aguilera S, Martin JP, Haider K (1982) Decomposition of 14C-labelled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol Biochem 14:37–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Facultad de Agronomía, Departmento de Ciencia del Suelo y Recursos NaturalesUniversidad de ConcepciónChillanChile
  2. 2.Instituto de Biología Vegetal y BiotecnologíaUniversidad de TalcaCasilla 747Chile
  3. 3.Facultad de Ciencias Agrarias, Departamento de Producción AgrícolaUniversidad de TalcaCasilla 747Chile

Personalised recommendations