Skip to main content

Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In Situ Enzyme Activity Rates

Part of the Soil Biology book series (SOILBIOL,volume 22)

Abstract

Enzyme activities are commonly measured in lab assays at a single standard temperature, which does not provide any information on their temperature sensitivity. Temperature is one of the primary controls on enzyme activities, yet few studies have explored how temperature drives enzyme activities in the environment. The temperature sensitivity of enzyme activity is controlled by the structure and conformation of the isoenzymes that constitute an environmental enzyme pool as well as physical and chemical interactions with soil minerals, clays, and organic matter. Yet, these complex relationships are typically represented by a simple Q 10 of 2. There is sufficient evidence to suggest that even for the same enzyme class, temperature sensitivities vary between soils, and even seasonally in a single site. We will explore the controls on enzyme temperature sensitivity and their importance for understanding seasonal patterns in soil processes and their potential responses to global change.

Keywords

  • Soil Respiration
  • Temperature Sensitivity
  • Extracellular Enzyme
  • Thermophilic Enzyme
  • Extracellular Enzyme Production

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-14225-3_13
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-14225-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 13.1

References

  • Ågren G, Wetterstedt JÅM (2007) What determines the temperature response of soil organic matter decomposition? Soil Biol Biochem 39:1794–1798

    CrossRef  Google Scholar 

  • Allen AP, Gillooly JF, Brown JH (2005) Linking the global carbon cycle to individual metabolism. Funct Ecol 19:202–213

    CrossRef  Google Scholar 

  • Bader NE, Cheng W (2007) Rhizosphere priming effect of Populus fremontii obscures the temperature sensitivity of soil organic carbon respiration. Soil Biol Biochem 39:600–606

    CrossRef  CAS  Google Scholar 

  • Bremner JM, Zatua MI (1975) Enzyme activity in soils at subzero temperatures. Soil Biol Biochem 7:383–387

    CrossRef  CAS  Google Scholar 

  • Chrost RG (1990) Microbial ectoenzymes in aquatic environments. In: Overbeck J, Chrost RJ (eds) Aquatic microbial ecology; biochemical and molecular approaches. Springer, New York, pp 47–78

    CrossRef  Google Scholar 

  • Chróst RJ, Siuda W (2002) Ecology of microbial enzymes in lake ecosystems. In: Dick RP, Burns RG (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 35–72

    Google Scholar 

  • Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a beta-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    PubMed  CrossRef  CAS  Google Scholar 

  • Criquet S, Tagger S, Vogt G, Iacazio G, Le Petit J (1999) Laccase activity of forest litter. Soil Biol Biochem 31:1239–1244

    CrossRef  CAS  Google Scholar 

  • Czimczik CI, Trumbore S, Carbone MS, Winston GC (2006) Changing sources of soil respiration with time since fire in a boreal forest. Global Change Biol 12:1–15

    CrossRef  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    PubMed  CrossRef  CAS  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol 12:154–164

    CrossRef  Google Scholar 

  • del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    CrossRef  Google Scholar 

  • Devevre OC, Horwat WR (2000) Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol Biochem 32:1773–1785

    CrossRef  CAS  Google Scholar 

  • Di Nardo C, Cinquegrana A, Papa S, Fuggi A, Fioretto A (2004) Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem. Soil Biol Biochem 36:1539–1544

    CrossRef  Google Scholar 

  • Elsgaard L, Vinther FR (2004) Modeling of the fine-scale temperature response of arylsulfatase activity in soil. J Plant Nutr Soil Sci-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 167:196–201

    CrossRef  CAS  Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662

    PubMed  CrossRef  CAS  Google Scholar 

  • Fenner N, Freeman C, Reynolds B (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol Biochem 37:1814–1821

    CrossRef  CAS  Google Scholar 

  • Frankenberger WT, Tabatabai MA (1991a) L-Asparaginase activity of soils. Biol Fertil Soils 11:6–12

    CrossRef  CAS  Google Scholar 

  • Frankenberger WT, Tabatabai MA (1991b) L-Glutaminase activity of soils. Soil Biol Biochem 23:869–874

    CrossRef  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 1342:119–131

    CrossRef  CAS  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    PubMed  CrossRef  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388

    PubMed  CrossRef  CAS  Google Scholar 

  • Jastrow JD, Miller RM (1997) Soil aggregate stabilization and carbon sequestration: feedbacks through organo-mineral associations. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC, Boca Raton, FL, pp 207–224

    Google Scholar 

  • Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cy 21:GB4017. doi:

    CrossRef  Google Scholar 

  • Kristensen E, Andersen FO, Blackburn TH (1992) Effects of benthic macrofauna and temperature on degradation of macroalgal detritus – the fate of organic-carbon. Limnol Oceanogr 37:1404–1419

    CrossRef  Google Scholar 

  • Lai CM, Tabatabai MA (1992) Kinetic-parameters of immobilized urease. Soil Biol Biochem 24:225–228

    CrossRef  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    CrossRef  Google Scholar 

  • Lopez-Urrutia A, Moran XAG (2007) Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88:817–822

    PubMed  CrossRef  Google Scholar 

  • Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE (1994) Characterization of psychrotrophic microorganisms producing Beta-galactosidase activities. Appl Environ Microbiol 60:12–18

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie Leeuwenhoek Int J Gen Mol Microbiol 81:373–383

    CrossRef  CAS  Google Scholar 

  • McClaugherty CA, Linkins AE (1990) Temperature responses of enzymes in two forest soils. Soil Biol Biochem 22:29–33

    CrossRef  CAS  Google Scholar 

  • Parham JA, Deng SP (2000) Detection, quantification and characterization of beta-glucosaminidase activity in soil. Soil Biol Biochem 32:1183–1190

    CrossRef  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grassland. Soil Sci Soc Am J 51:1173–1179

    CrossRef  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    PubMed  CrossRef  CAS  Google Scholar 

  • Privalov PL, Tsalkova TN (1979) Micro-stabilities and macro-stabilities of globular-proteins. Nature 280:693–696

    PubMed  CrossRef  CAS  Google Scholar 

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27

    CrossRef  Google Scholar 

  • Sagemann J, Jorgensen BB, Greeff O (1998) Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol J 15:85–100

    CrossRef  CAS  Google Scholar 

  • Sanchez-Perez G, Mira A, Nyiro G, Pasic L, Rodriguez-Valera F (2008) Adapting to environmental changes using specialized paralogs. Trends Genet 24:154–158

    PubMed  CrossRef  CAS  Google Scholar 

  • Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biol 12:205–216

    CrossRef  Google Scholar 

  • Secundo F, Russo C, Giordano A, Carrea G, Rossi M, Raia CA (2005) Temperature-induced conformational change at the catalytic site of Sulfolobus solfataricus alcohol dehydrogenase highlighted by Asn249Tyr substitution. A hydrogen/deuterium exchange, kinetic, and fluorescence quenching study. Biochemistry 44:11040–11048. doi:10.1021/bi050469c

    PubMed  CrossRef  CAS  Google Scholar 

  • Seto M, Misawa K (1982) Growth rate, biomass production, and carbon balance of Pseudomonas aeruginosa in a glucose-limited medium at temperature and osmotic pressure extremes. Jpn J Ecol 32:365–371

    Google Scholar 

  • Sinsabaugh RL, Shah JJ (2010) Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production. Ecology 91:1455–1465

    PubMed  CrossRef  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    CrossRef  CAS  Google Scholar 

  • Sollins P, Homann P, Caldwell BK (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    CrossRef  Google Scholar 

  • Sørensen LH (1972) Stabilization of newly formed amino acid metabolites in soil by clay minerals. Soil Sci 114:5–11

    CrossRef  Google Scholar 

  • Steinweg JM, Plante AF, Conant RT, Paul EA, Tanaka DL (2008) Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol Biochem 40:2722–2728

    CrossRef  CAS  Google Scholar 

  • Straub FB (1964) Formation of the secondary and tertiary structure of enzymes. Adv Enzymol Relat Subj Biochem 26:89–114

    Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy-Soil Science Society of America, Madison, WI

    Google Scholar 

  • ten Hulscher TEM, Cornelissen G (1996) Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants – A review. Chemosphere 32:609–626

    CrossRef  Google Scholar 

  • Thamdrup B, Hansen JW, Jorgensen BB (1998) Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol Ecol 25:189–200

    CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic-matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    CrossRef  CAS  Google Scholar 

  • Trasar-Cepeda C, Gil-Sotres F, Leiros MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319

    CrossRef  CAS  Google Scholar 

  • Tsou CL (1993) Conformational flexbility of enzyme active- sites. Science 262:380–381

    PubMed  CrossRef  CAS  Google Scholar 

  • Vial Ludovic MC, Dekimpe Groleau V, Deziel E (2007) Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17:1407–1429

    PubMed  CAS  Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    CrossRef  CAS  Google Scholar 

  • Wallenstein MD, McMahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Global Change Biol 15:1631–1639

    Google Scholar 

  • Wilczek S, Fischer H, Pusch MT (2005) Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river. Microb Ecol 50:253–267. doi:10.1007/s00248-004-0119-2

    PubMed  CrossRef  CAS  Google Scholar 

  • Williams PJ (1973) The validity of the application of simple kinetic analysis to heterogeneous microbial populations. Limnol Oceanogr 18:159–165

    CrossRef  Google Scholar 

  • Wirth SJ, Wolf GA (1992) Microplate colourimetric assay for endoacting cellulase, xylanase, chitinase, 1, 3-Beta-glucanase and amylase extracted from forest soil horizons. Soil Biol Biochem 24:511–519

    CrossRef  CAS  Google Scholar 

  • Zavodszky P, Kardos J, Svingor A, Petsko GA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95:7406–7411

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Wallenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallenstein, M., Allison, S.D., Ernakovich, J., Steinweg, J.M., Sinsabaugh, R. (2010). Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In Situ Enzyme Activity Rates. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_13

Download citation