An Evaluation of Visualization Techniques for Remotely Sensed Hyperspectral Imagery

  • Shangshu Cai
  • Robert Moorhead
  • Qian Du
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 3)


Displaying the abundant information contained in a remotely sensed hyperspectral image is a challenging problem. Currently no approach can satisfactorily render the desired information at arbitrary levels of detail. This chapter discusses user studies on several approaches for representing the information contained in hyperspectral information. In particular, we compared four visualization methods: grayscale side-by-side display (GRAY), hard visualization (HARD), soft visualization (SOFT), and double-layer visualization (DBLY). We designed four tasks to evaluate these techniques in their effectiveness at conveying global and local information in an effort to provide empirical guidance for better visual analysis methods. We found that HARD is less effective for global pattern display and conveying local detailed information. GRAY and SOFT are effective and comparable for showing global patterns, but are less effective for revealing local details. Finally, DBLY visualization is efficient in conveying local detailed information and is as effective as GRAY and SOFT for global pattern depiction.


Hyperspectral data visualization Color display 



This work was supported in part by the NASA Science Mission Directorate, Earth System Division, Applied Science Program under a contract to Mississippi State University through NASA’s Stennis Space Center and by the DoD High Performance Computing Visualization Initiative managed by the USACE ERDC. The authors wish to thank Dr. James Fowler for his insightful suggestions on improving some of the graphs.


  1. 1.
    Marcal, A.: Automatic color indexing of hierarchically structured classified images. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium, vol. 7, pp. 4976–4979 (2005)Google Scholar
  2. 2.
    Wessels, R., Buchheit, M., Espesset, A.: The development of a high performance, high volume distributed hyperspectral processor and display system. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium, vol. 4, pp. 2519–2521 (2002)Google Scholar
  3. 3.
    Tyo, J.S., Konsolakis, A., Diersen, D.I., Olsen, R.C.: Principal components-based display strategy for spectral imagery. IEEE Trans. Geosci. Remote Sens. 41(3), 708–718 (2003)CrossRefGoogle Scholar
  4. 4.
    Tsagaris, V., Anastassopoulos, V., Lampropoulo, G.A.: Fusion of hyperspectral data using segmented PCT for color representation and classification. IEEE Trans. Geosci. Remote Sens. 43(10), 2365–2375 (2005)CrossRefGoogle Scholar
  5. 5.
    Jacobson, N.P., Gupta, M.R.: Design goals and solutions for display of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 43(11), 2684–2692 (2005)CrossRefGoogle Scholar
  6. 6.
    Jacobson, N.P., Gupta, M.R., Cole, J.B.: Linear fusion of image sets for display. IEEE Trans. Geosci. Remote Sens. 45(10), 3277–3288 (2007)CrossRefGoogle Scholar
  7. 7.
    Demir, B., Çelebi, A., Ertürk, S.: A low-complexity approach for the color display of hyperspectral remote-sensing images using one-bit-transform-based band selection. IEEE Trans. Geosci. Remote Sens. 47(1), 97–105 (2009)CrossRefGoogle Scholar
  8. 8.
    Cui, M., Razdan, A., Hu, J., Wonka, P.: Interactive hyperspectral image visualization using convex optimization. IEEE Trans. Geosci. Remote Sens. 47(6), 1678–1684 (2009)Google Scholar
  9. 9.
    Du, Q., Raksuntorn, N., Cai, S., Moorhead, R.: Color display for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 46(6), 1858–1866 (2008)CrossRefGoogle Scholar
  10. 10.
    Cai, S., Du, Q., Moorhead, R.J.: Hyperspectral imagery visualization using double layers. IEEE Trans. Geosci. Remote Sens. 45(10), 3028–3036 (2007)CrossRefGoogle Scholar
  11. 11.
    Kosara, R., Healey, C.G., Interrante, W., Laidlaw, D.H., Ware, C.: User studies: why, how, and when? IEEE Comput. Graphics Appl. 23(4), 20–25 (2003)CrossRefGoogle Scholar
  12. 12.
    Laidlaw, D.H., Kirby, R.M., Davidson, J.S., Miller, T.S., Silva, M., Warren, W.H., Tarr, M.: Quantitative comparative evaluation of 2D vector field visualization methods. In: IEEE Visualization Conference Proceedings, pp. 143–150 (2001)Google Scholar
  13. 13.
    Acevedo, D., Laidlaw, D.: Subjective quantification of perceptual interactions among some 2D scientific visualization methods. IEEE Trans. Visualization Comput. Graphics 12(5), 1133–1140 (2006)CrossRefGoogle Scholar
  14. 14.
    Healey, C.G.: Choosing effective colours for data visualization. In: IEEE Visualization Conference Proceedings, pp. 263–270 (1996)Google Scholar
  15. 15.
    Bair, A.S., House, D.H., Ware, C.: Texturing of layered surfaces for optimal viewing. IEEE Trans. Visualization Comput. Graphics 12(5), 1125–1132 (2006)CrossRefGoogle Scholar
  16. 16.
    Hagh-Shenas, H., Kim, S., Interrante, V., Healey, C.: Weaving versus blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color. IEEE Trans. Visualization Comput. Graphics 13(6), 1270–1277 (2007)CrossRefGoogle Scholar
  17. 17.
    Ward, M.O., Theroux, K.J.: Perceptual benchmarking for multivariate data visualization. In: IEEE Visualization Conference Proceedings, pp. 314–321 (1997)Google Scholar
  18. 18.
    Adams, J.B., Smith, M.O., Gillespie, A.R.: Imaging spectroscopy: Interpretation based on spectral mixture analysis. In: Pieters, C.M., Englert, P. (eds.) Remote Geochemical Analysis: Elemental and Mineralogical Composition 7. Cambridge University Press, New York (1993)Google Scholar
  19. 19.
    Heinz, D.C., Chang, C.-I.: Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)CrossRefGoogle Scholar
  20. 20.
    Harsanyi, J.C., Chang, C.-I.: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785 (1994)CrossRefGoogle Scholar
  21. 21.
    Howell, D.C.: Statistical Methods for Psychology, 6th edn. Wadsworth, Monterey, CA (2006)Google Scholar
  22. 22.
    Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. Wiley, West Sussex, England (1994)Google Scholar
  23. 23.
    Cai, S.: Dissertation: Hyperspectral image visualization by using double and multiple layers, Mississippi State University, Dec (2008)Google Scholar
  24. 24.
    Ware, C.: Information visualization: perception for design, 2nd edn. Morgan Kaufmann, Maryland Heights, Missouri (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Mississippi State UniversityMississippi StateUSA
  2. 2.Center for Risk Studies and SafetySanta BarbaraUSA

Personalised recommendations