Color Science and Engineering for the Display of Remote Sensing Images

  • Maya R. Gupta
  • Nasiha Hrustemovic
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 3)


In this chapter we discuss the color science issues that arise in the display and interpretation of artificially-colored remote-sensing images, and discuss some solutions to these challenges. The focus is on visualizing images that naturally have more than three components of information, and thus displaying them as a color image necessarily implies a reduction of information. A good understanding of display hardware and human color vision is useful in constructing and interpreting hyperspectral visualizations. After detailing key challenges, we review and propose solutions to create and refine visualizations to be more effective.


Color Display Basis functions White balance Adaptation 


  1. 1.
    Stone, M.: A Field Guide to Digital Color. AK Peters Ltd., Massachusetts (2003)Google Scholar
  2. 2.
    Trussell, J., Vrhel, M.: Fundamentals of Digital Imaging. Cambridge University Press, London (2008)Google Scholar
  3. 3.
    Sharma, G. (ed.): Digital Color Imaging. CRC Press, USA (2003)Google Scholar
  4. 4.
    Jacobson, N.P., Gupta, M.R.: Design goals and solutions for the display of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(11), 2684–2692 (2005)CrossRefGoogle Scholar
  5. 5.
    Cui, M., Razdan, A., Hu, J., Wonka, P.: Interactive hyperspectral image visualization using convex optimization. IEEE Trans. Geosci. Remote Sens. 47, 1673–1684 (2009)CrossRefGoogle Scholar
  6. 6.
    Tsagaris, V., Anastassopoulos, V., Lampropoulos, G.: Fusion of hyperspectral data using segmented PCT for color representation and classification. IEEE Trans. Geosci. Remote Sens. 43, 2365–2375 (2005)CrossRefGoogle Scholar
  7. 7.
    Fairchild, M.: Color Appearance Models. Addison Wesley Inc., Reading, Massachusetts (2005)Google Scholar
  8. 8.
    Healey, C., Booth, K.S., Enns, J.: Visualizing real-time multivariate data using preattentive processing. ACM Trans. Model Comput. Simul. 5(3), 190–221 (1995)CrossRefGoogle Scholar
  9. 9.
    Jefferson, L., Harvey, R.: Accommodating color blind computer users. In: Proceedings of the International ACM SIGACCESS Conference on Computers Accessibility vol. 8, pp. 40–47, 2006Google Scholar
  10. 10.
    Ready, P.J., Wintz, P.A.: Information extraction, SNR improvement, and data compression in multispectral imagery. IEEE Trans. Commun. 21(10), 1123–1131 (1973)CrossRefGoogle Scholar
  11. 11.
    Tyo, J.S., Konsolakis, A., Diersen, D.I., Olsen, R.C.: Principal-components-based display strategy for spectral imagery. IEEE Trans. Geosci. Remote Sens. 41(3), (2003)Google Scholar
  12. 12.
    Du, H., Qi, H., Wang, X., Ramanath, R., Snyder, W.E.: Band selection using independent component analysis for hyperspectral image processing. In. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, pp. 93–98. Washington, DC, USA (2003)Google Scholar
  13. 13.
    Gupta, M.R., Jacobson, N.P.: Wavelet principal components analysis and its application to hyperspectral images. IEEE Int. Conf. Image Proc. (2006)Google Scholar
  14. 14.
    R.O.G. et al.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998)Google Scholar
  15. 15.
    Jacobson, N.P., Gupta, M.R., Cole, J.B.: Linear fusion of image sets for display. IEEE Trans. Geosci. Remote Sens. 45(10), 3277–3288 (2007)CrossRefGoogle Scholar
  16. 16.
    Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. Wiley, New York (2000)Google Scholar
  17. 17.
    Lukac, R.: New framework for automatic white balancing of digital camera images. Signal Process. 88, 582–592 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations