Reconstructions from Compressive Random Projections of Hyperspectral Imagery

  • James E. Fowler
  • Qian Du
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 3)


High-dimensional data such as hyperspectral imagery is traditionally acquired in full dimensionality before being reduced in dimension prior to processing. Conventional dimensionality reduction on-board remote devices is often prohibitive due to limited computational resources; on the other hand, integrating random projections directly into signal acquisition offers an alternative to explicit dimensionality reduction without incurring sender-side computational cost. Receiver-side reconstruction of hyperspectral data from such random projections in the form of compressive-projection principal component analysis (CPPCA) as well as compressed sensing (CS) is investigated. Specifically considered are single-task CS algorithms which reconstruct each hyperspectral pixel vector of a dataset independently as well as multi-task CS in which the multiple, possibly correlated hyperspectral pixel vectors are reconstructed simultaneously. These CS strategies are compared to CPPCA reconstruction which also exploits cross-vector correlations. Experimental results on popular AVIRIS datasets reveal that CPPCA outperforms various CS algorithms in terms of both squared-error as well as spectral-angle quality measures while requiring only a fraction of the computational cost.


Hyperspectral data Principal component analysis (PCA) Random projections Rayleigh-Ritz theory 


  1. 1.
    Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag, New York (1986)Google Scholar
  2. 2.
    Prasad, S., Bruce, L.M.: Limitations of principal component analysis for hyperspectral target recognition. IEEE Geosci. Remote Sens. Lett. 5(4), 625–629 (2008)CrossRefGoogle Scholar
  3. 3.
    Wang, J., Chang, C.-I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)CrossRefGoogle Scholar
  4. 4.
    Lennon, L., Mercier, G., Mouchot, M.C., Hubert-Moy, L.: Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images. In: Proceedings of the International Geoscience and Remote Sensing Symposium, vol. 6, Sydney, Australia, July 2001, pp. 2893–2895Google Scholar
  5. 5.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  6. 6.
    Mohan, A., Sapiro, G., Bosch, E.: Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 4(2), 206–210 (2007)CrossRefGoogle Scholar
  7. 7.
    Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)CrossRefGoogle Scholar
  8. 8.
    Candès, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)CrossRefGoogle Scholar
  9. 9.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)CrossRefGoogle Scholar
  11. 11.
    Fowler, J.E.: Compressive-projection principal component analysis for the compression of hyperspectral signatures. In: Storer, J.A., Marcellin, M.W. (eds.), Proceedings of the IEEE Data Compression Conference, Snowbird, UT, March 2008, pp. 83–92Google Scholar
  12. 12.
    Fowler, J.E.: Compressive-projection principal component analysis and the first eigenvector. In: Storer, J.A., Marcellin, M.W. (eds.), Proceedings of the IEEE Data Compression Conference, Snowbird, UT, March 2009, pp. 223–232Google Scholar
  13. 13.
    Fowler, J.E.: Compressive-projection principal component analysis. IEEE Trans. Image Process. 18(10), 2230–2242 (2009)CrossRefGoogle Scholar
  14. 14.
    Willett, R.M., Gehm, M.E., Brady, D.J.: Multiscale reconstruction for computational spectral imaging. In: Bouman, C.A., Miller, E.L., Pollak, I. (eds.), Computational Imaging V, Proceedings of SPIE 6498, San Jose, CA, January 2007, p. 64980LGoogle Scholar
  15. 15.
    Pitsianis, N.P., Brady, D.J., Portnoy, A., Sun, X., Suleski, T., Fiddy, M.A., Feldman, M.R., TeKolste, R.D.: Compressive imaging sensors. In: Athale, R.A., Zolper, J.C. (eds.), Intelligent Integrated Microsystems, Proceedings of SPIE 6232, Kissimmee, FL, April 2006, p. 62320AGoogle Scholar
  16. 16.
    Brady, D.J.: Micro-optics and megapixels. Opt. Photon. News 17(11), 24–29 (2006)CrossRefGoogle Scholar
  17. 17.
    Parlett, B.N.: The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathematics, Philadelphia (1998)zbMATHGoogle Scholar
  18. 18.
    Combettes, P.L.: The foundations of set theoretic estimation. Proc. IEEE 81(2), 182–208 (1993)CrossRefGoogle Scholar
  19. 19.
    Penna, B., Tillo, T., Magli, E., Olmo, G.: A new low complexity KLT for lossy hyperspectral data compression. In: Proceedings of the International Geoscience and Remote Sensing Symposium, vol. 7, Denver, CO, August 2006, pp. 3525–3528Google Scholar
  20. 20.
    Du, Q., Fowler, J.E.: Low-complexity principal component analysis for hyperspectral image compression. Int. J. High Perform. Comput. Appl. 22(4), 438–448 (2008)CrossRefGoogle Scholar
  21. 21.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Candès, E., Romberg, J.: ℓ1-magic: Recovery of Sparse Signals via Convex Programming. California Institute of Technology, Pasadena (2005)Google Scholar
  24. 24.
    Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Areas Commun. 1(4), 586–597 (2007)Google Scholar
  25. 25.
    Do, T.T., Gan, L., Nguyen, N., Tran, T.D.: Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, October 2008, pp. 581–587Google Scholar
  26. 26.
    Ji, S., Dunson, D., Carin, L.: Multitask compressive sensing. IEEE Trans. Signal Process. 57(1), 92–106 (2009)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Fornasier, M., Rauhut, H.: Recovery algorithms for vector-valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46(2), 577–613 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Mishali, M., Eldar, Y.C.: Reduce and boost: recovering arbitrary sets of jointly sparse vectors. IEEE Trans. Signal Process. 56(10), 4692–4702 (2008)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Wipf, D.P., Rao, B.D.: An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Process. 55(7), 3704–3716 (2007)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86(3), 572–588 (2006)CrossRefzbMATHGoogle Scholar
  31. 31.
    Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringGeosystems Research Institute, Mississippi State UniversityMississippi StateUSA

Personalised recommendations