Effects of the Spatial Enhancement of Hyperspectral Images on the Distribution of Spectral Classes

Chapter
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 3)

Abstract

In this chapter, we present a study on the effects of the spatial enhancement of hyperspectral (HS) images on the distribution of spectral classes. The analysis is based on the concept of dimensionality reduction, the transformation of high-dimensional data into a meaningful representation of reduced dimensionality which may favor visualization and understanding of high-dimensional data. Non-linear techniques of dimensionality reduction are applied to original Hyperion HS data (30 m) and to fusion products with the panchromatic channel of ALI (10 m) obtained from different sharpening methods, in order to evaluate possible advantages or critical situations deriving from multi-sensor, multi-resolution data fusion.

Keywords

Image fusion Hyperspectral Spectral signatures 

References

  1. 1.
    Eismann, M., Hardie, R.: Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans. Geosci. Remote Sens. 43(3), 455–465 (2005)CrossRefGoogle Scholar
  2. 2.
    Capobianco, L., Garzelli, A., Nencini, F., Alparone, L., Baronti, S.: Spatial enhancement of Hyperion hyperspectral data through ALI panchromatic image. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS’07, pp. 5158–5161 (2007)Google Scholar
  3. 3.
    Tu, T., Su, S., Shyu, H., Huang, P.: A new look at IHS-like image fusion methods. Inf. Fusion 2(3), 177–186 (2001)CrossRefGoogle Scholar
  4. 4.
    Carper, W., Lillesand, T., Kiefer, R.: The use of intensity–hue–saturation transformations for merging spot panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 56(4), 459–467 (1990)Google Scholar
  5. 5.
    Tu, T., Huang, P., Hung, C., Chang, C.: A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geosci. Remote Sens. Lett. 1(4), 309–312 (2004)CrossRefGoogle Scholar
  6. 6.
    González-Audicana, M., Otazu, X., Fors, O., Álvarez-Mozos, J.: A low computational-cost method to fuse IKONOS images using the spectral response function of its sensors. IEEE Trans. Geosci. Remote Sens. 44(6), 1683–1691 (2006)CrossRefGoogle Scholar
  7. 7.
    Chavez, P.S., Sides, S.C., Anderson, J.A.: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 57(3), 295–303 (1991)Google Scholar
  8. 8.
    Zhang, Y.: Understanding image fusion. Photogramm. Eng. Remote Sens. 70(6), 653–760 (2004)Google Scholar
  9. 9.
    Laben, C.A., Brower, B.V.: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Eastman Kodak Company, Tech. Rep. US Patent #6, 011, 875 (2000)Google Scholar
  10. 10.
    Aiazzi, B., Baronti, S., Selva, M.: Improving component substitution pansharpening through multivariate regression of MS+Pan data. IEEE Trans. Geosci. Remote Sens. 45(10), 3230–3239 (2007)CrossRefGoogle Scholar
  11. 11.
    Garzelli, A., Nencini, F.: Fusion of panchromatic and multispectral images by genetic algorithms. In Proceedings IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS’06, pp. 3810–3813 (2006)Google Scholar
  12. 12.
    Alparone, L., Baronti, S., Garzelli, A., Nencini, F.: A global quality measurement of pan-sharpened multispectral imagery. IEEE Geosci. Remote Sens. Lett. 1(4), 313–317 (2004)CrossRefGoogle Scholar
  13. 13.
    Garzelli, A., Nencini, F., Capobianco, L.: Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans. Geosci. Remote Sens. 46(1), 228–236 (2008)CrossRefGoogle Scholar
  14. 14.
    Wald, L., Ranchin, T., Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 63(6), 691–699 (1997)Google Scholar
  15. 15.
    Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A.: Sharpening of very high resolution images with spectral distortion minimization. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’03, vol. 1, pp. 458–460 (2003)Google Scholar
  16. 16.
    Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., Bruce, L.: Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data fusion contest. IEEE Trans. Geosci. Remote Sens. 45(10), 3012–3021 (2007)Google Scholar
  17. 17.
    Garguet-Duport, B., Girel, J., Chassery, J., Patou, G.: The use of multiresolution analysis and wavelets transform for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 62(9), 1057–1066 (1996)Google Scholar
  18. 18.
    Yocky, D.A.: Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data. Photogramm. Eng. Remote Sens. 62(9), 1067–1074 (1996)Google Scholar
  19. 19.
    Aiazzi, B., Alparone, L., Argenti, F., Baronti, S., Pippi, I.: Multisensor image fusion by frequency spectrum substitution: subband and multirate approaches for a 3:5 scale ratio case. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS’00, vol. 6, pp. 2629–2631 (2000)Google Scholar
  20. 20.
    Wilson, T., Rogers, S., Kabrisky, M.: Perceptual-based image fusion for hyperspectral data. IEEE Trans. Geosci. Remote Sens. 35(4), 1007–1017 (1997)CrossRefGoogle Scholar
  21. 21.
    Alparone, L., Cappellini, V., Mortelli, L., Aiazzi, B., Baronti, S., Carlà, R.: A pyramid-based approach to multisensor image data fusion with preservation of spectral signatures. In: Future Trends in Remote Sensing, Rotterdam, The Netherlands, Balkema (1998)Google Scholar
  22. 22.
    Zhou, J., Civco, D., Silander J., et al.: A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 19(4), 743–758 (1998)CrossRefGoogle Scholar
  23. 23.
    Ranchin, T., Wald, L.: Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 66(1), 49–61 (2000)Google Scholar
  24. 24.
    Scheunders, P., De Backer, S.: Fusion and merging of multispectral images with use of multiscale fundamental forms. J. Opt. Soc. Am. A 18(10), 2468–2477 (2001)CrossRefGoogle Scholar
  25. 25.
    Núñez, J., Otazu, X., Fors, O., Prades, A., Palà, V., Arbiol, R.: Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 37(3), 1204–1211 (1999)CrossRefGoogle Scholar
  26. 26.
    Garzelli, A., Benelli, G., Barni, M., Magini, C.: Improving wavelet-based merging of panchromatic and multispectral images by contextual information. Proc. SPIE 4170, 82 (2003)CrossRefGoogle Scholar
  27. 27.
    Garzelli, A., Nencini, F.: Panchromatic sharpening of remote sensing images using a multiscale Kalman filter. Pattern Recognit. 40(12), 3568–3577 (2007)CrossRefMATHGoogle Scholar
  28. 28.
    González-Audicana, M., Saleta, J.L., Catalán, R.G., García, R.: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 42(6), 1291–1299 (2004)CrossRefGoogle Scholar
  29. 29.
    Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A.: Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 40(10), 2300–2312 (2002)CrossRefGoogle Scholar
  30. 30.
    Ranchin, T., Aiazzi, B., Alparone, L., Baronti, S., Wald, L.: Image fusion—the ARSIS concept and some successful implementation schemes. ISPRS J. Photogramm. Remote Sens. 58, pp. 4–18 (2003)Google Scholar
  31. 31.
    Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., Selva, M.: MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm. Eng. Remote Sens. 72(5), 591–596 (2006)Google Scholar
  32. 32.
    Garzelli, A., Nencini, F.: Interband structure modeling for pan-sharpening of very high-resolution multispectral images. Information Fusion.6(3), 213--224 (2005)Google Scholar
  33. 33.
    Garzelli, A., Nencini, F.: Hypercomplex quality assessment of multi/hyper-spectral images. IEEE Geosci. Remote Sens. Lett. 6, 662–665 (2009)CrossRefGoogle Scholar
  34. 34.
    Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., Selva, M.: Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 74, 193–200 (2008)Google Scholar
  35. 35.
    Bruzzone, L., Carlin, L., Alparone, L., Baronti, S., Garzelli, A., Nencini, F.: Can multiresolution fusion techniques improve classification accuracy? In: Bruzzone, L. (ed.) Image and Signal Processing for Remote Sensing XII, p. 636509. SPIE, Bellingham (2006)Google Scholar
  36. 36.
    Bovolo, F., Bruzzone, L., Capobianco, L., Marchesi, S., Nencini, F., Garzelli, A.: Analysis of the effects of pansharpening in change detection on VHR images. IEEE Geosci. Remote Sens. Lett. 6(1), 53–57 (2010), Google Scholar
  37. 37.
    Garzelli, A., Capobianco, L., Nencini, F.: On the effects of pan-sharpening to target detection. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS’09, 136–139 (2009)Google Scholar
  38. 38.
    van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: “Dimensionality reduction: a comparative review,” 2007. Tilburg University Technical Report TICC-TR 2009-005, 2009 Google Scholar
  39. 39.
    Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Muller, K., Ratsch, G., Smola, A.: Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 10(5), 1000–1017 (1999)CrossRefGoogle Scholar
  40. 40.
    Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  41. 41.
    He, X., Niyogi, P.: Locality preserving projections. Adv. Neural Inf. Process. Syst. 16, 37 (2004)Google Scholar
  42. 42.
    Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. MIT Press, Cambridge (2006)Google Scholar
  43. 43.
    Chung, F.: Spectral Graph Theory, 1st edn. ser. CBMS Regional Conference Series in Mathematics, no. 92. American Mathematical Society, Providence (1997)Google Scholar
  44. 44.
    Camps-Valls, G., Bandos, T., Zhou, D.: Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 45(10), 2044–3054 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of SienaSienaItaly

Personalised recommendations