Optical Remote Sensing pp 269-299

Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 3)

Change Detection in VHR Multispectral Images: Estimation and Reduction of Registration Noise Effects

  • Lorenzo Bruzzone
  • Silvia Marchesi
  • Francesca Bovolo
Chapter

Abstract

In this chapter we address the problem of change detection (CD) in very high geometrical resolution (VHR) optical images by studying the effects of residual misregistration (registration noise) between images acquired over the same geographical area at different times. According to an experimental analysis driven from a theoretical study, we identify the main effects of RN in VHR images and derive some important properties exploiting a polar framework for change vector analysis (CVA). On the basis of the identified properties, we propose: (i) a technique for an adaptive and unsupervised explicit estimation of the RN distribution based on a multiscale analysis of the behavior of spectral change vectors in the polar domain and the Parzen window method; and (ii) an automatic context-sensitive technique robust to registration noise (RN) for CD based on a multiscale analysis in a quantized polar domain. Experimental results obtained on simulated and real VHR multitemporal images confirm the validity of the proposed analysis on RN, the reliability of the derived properties and the effectiveness of the proposed techniques for the estimation of RN distribution and change detection.

Keywords

Change detection Very high geometrical resolution images Registration noise Change vector analysis Remote sensing 

References

  1. 1.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Proc. 14(3), 294–307 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Lu, D., Mausel, P., Brondizio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25(12), 2365–2407 (2004)CrossRefGoogle Scholar
  3. 3.
    Singh, A.: Digital change detection technique using remotely senses data. Int. J. Remote Sens. 10(6), 989–1003 (1989)CrossRefGoogle Scholar
  4. 4.
    Coppin, P.R., Jonckheere, I., Nachaerts, K.: Digital change detection in ecosystem monitoring: a review. Int. J. Remote Sens. 25(9), 1565–1596 (2004)CrossRefGoogle Scholar
  5. 5.
    Townshend, J.R.G., Justice, C.O., Gurney, C.: The impact of misregistration on change detection. IEEE Trans. Geosci. Remote Sens. 30, 1054–1060 (1992)CrossRefGoogle Scholar
  6. 6.
    Dai, X., Khorram, S.: The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans. Geosci. Remote Sens. 36, 1566–1577 (1998)CrossRefGoogle Scholar
  7. 7.
    Bruzzone, L., Cossu, R.: An adaptive approach for reducing registration noise effects in unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 41(11), 2455–2465 (2003)CrossRefGoogle Scholar
  8. 8.
    Li, J., Qian, S., Chen, X.: Object-oriented method of land cover change detection approach using high spatial resolution remote sensing data. IEEE Trans. Geosci. Remote Sens. 5, 3005–3007 (2003)Google Scholar
  9. 9.
    Bovolo, F.: A multilevel parcel-based approach to change detection in very high resolution multitemporal images. IEEE Geosci. Remote Sens. Lett. 6(1), 33–37 (2009)CrossRefGoogle Scholar
  10. 10.
    Niemeyer, I., Marpu, P.R., Nussbaum, S.: Change detection using the object features. In: IEEE International Geoscience & Remote Sensing Symposium, pp. 2374–2377, 2007Google Scholar
  11. 11.
    Bovolo, F., Bruzzone, L.: A theoretical framework for unsupervised change detection based on change vector analysis in polar domain. IEEE Trans. Geosci. Remote Sens. 45(1), 218–236 (2007)CrossRefGoogle Scholar
  12. 12.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Geosci. Remote Sens. PAMI-11(7), 674–693 (1989)Google Scholar
  13. 13.
    Bovolo, F., Bruzzone, L.: A detail preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 43(12), 2963–2972 (2005)CrossRefGoogle Scholar
  14. 14.
    Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis: Kernel Approach with S-plus Illustrations. Clarendon Press, Oxford (1997)MATHGoogle Scholar
  15. 15.
    Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1077 (1962)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Patrick, E.A., Fischer, F.P.: III. A generalized k-nearest neighbor rule. Inf. Control 16, 128–152 (1970)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Reilly, D.L., Cooper, L.N., Elbaun, C.: A neural model for category learning. Biol. Cybern. 45, 35–41 (1982)CrossRefGoogle Scholar
  18. 18.
    Bruzzone, L., Prieto, D.F.: Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 38, 1171–1182 (2000)CrossRefGoogle Scholar
  19. 19.
    Bruzzone, L., Prieto, D.F.: An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Image Process. 11(4), 452–466 (2002)CrossRefGoogle Scholar
  20. 20.
    Bruzzone, L., Prieto, D.F.: An adaptive parcel-based technique for unsupervised change detection. Int. J. Remote Sens. 21(4), 817–822 (2000)CrossRefGoogle Scholar
  21. 21.
    Bruzzone, L., Carlin, L.: A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44(9), 2587–2600 (2006)CrossRefGoogle Scholar
  22. 22.
    Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M., Willhauck, G.: eCognition user guide 4. Definiens Imaging (2004)Google Scholar
  23. 23.
    Bovolo, F., Bruzzone, L., Capobianco, L., Garzelli, A., Marchesi, S., Nencini, F.: Analysis of the effects of pansharpening in change detection on VHR images. IEEE Geosci. Remote Sens. Lett. 7(1), 53-57 (2010)Google Scholar
  24. 24.
    ENVI User Manual. RSI, Boulder, CO (2003) http://www.RSInc.com/envi
  25. 25.
    Marchesi, S., Bovolo, F., Bruzzone, L.: A context-sensitive technique robust to registration noise for change detection in VHR images. IEEE Trans. Image Process. 19(7), 1877-1889 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lorenzo Bruzzone
    • 1
  • Silvia Marchesi
    • 1
  • Francesca Bovolo
    • 1
  1. 1.Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly

Personalised recommendations