A Review of Kernel Methods in Remote Sensing Data Analysis

  • Luis Gómez-Chova
  • Jordi Muñoz-Marí
  • Valero Laparra
  • Jesús Malo-López
  • Gustavo Camps-Valls
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 3)


Kernel methods have proven effective in the analysis of images of the Earth acquired by airborne and satellite sensors. Kernel methods provide a consistent and well-founded theoretical framework for developing nonlinear techniques and have useful properties when dealing with low number of (potentially high dimensional) training samples, the presence of heterogenous multimodalities, and different noise sources in the data. These properties are particularly appropriate for remote sensing data analysis. In fact, kernel methods have improved results of parametric linear methods and neural networks in applications such as natural resource control, detection and monitoring of anthropic infrastructures, agriculture inventorying, disaster prevention and damage assessment, anomaly and target detection, biophysical parameter estimation, band selection, and feature extraction. This chapter provides a survey of applications and recent theoretical developments of kernel methods in the context of remote sensing data analysis. The specific methods developed in the fields of supervised classification, semisupervised classification, target detection, model inversion, and nonlinear feature extraction are revised both theoretically and through experimental (illustrative) examples. The emergent fields of transfer, active, and structured learning, along with efficient parallel implementations of kernel machines, are also revised.


Remote Sensing Kernel Methods Support Vector Machines (SVM) Supervised and Semisupervised Classification Target Detection Biophysical Parameter Estimation Nonlinear Feature Extraction 



This work was partially supported by projects CICYT-FEDER TEC2009-13696, AYA2008-05965-C04-03, and CSD2007-00018. Valero Laparra acknowledges the support of a Ph.D grant from the Spanish Government BES-2007-16125. The authors would like to thank a number of colleagues and collaborators in the field of kernel methods, and whose insight and points of view are at some extent reflected in this chapter: Dr. Devis Tuia from the University of Lausanne (Switzerland), Dr. Frédéric Ratle from Nuance Communications (Belgium), Dr. Jerónimo Arenas from the University Carlos III de Madrid (Spain), and Prof. Lorenzo Bruzzone from the University of Trento (Italy).


  1. 1.
    Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis. An Introduction, 3rd edn. Springer, Berlin (1999)Google Scholar
  2. 2.
    Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14, 55–63 (1968)CrossRefGoogle Scholar
  3. 3.
    Fukunaga, K., Hayes, R.R.: Effects of sample size in classifier design. IEEE Trans. Pattern Anal. Mach. Intell. 11, 873–885 (1989)CrossRefGoogle Scholar
  4. 4.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  5. 5.
    Schölkopf, B., Smola, A.: Learning with Kernels – Support Vector Machines, Regularization, Optimization and Beyond. MIT Press Series, Cambridge (2002)Google Scholar
  6. 6.
    Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43, 1351–1362 (2005)CrossRefGoogle Scholar
  7. 7.
    Mercier, G., Girard-Ardhuin, F.: Partially supervised oil-slick detection by SAR imagery using kernel expansion. IEEE Trans. Geosci. Remote Sens. 44, 2839–2846 (2006)CrossRefGoogle Scholar
  8. 8.
    Muñoz Marí, J., Bruzzone, L., Camps-Valls, G.: A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 45, 2683–2692 (2007)CrossRefGoogle Scholar
  9. 9.
    Camps-Valls, G., Gómez-Chova, L., Muñoz Marí, J., Martínez-Ramón, M., Rojo-Álvarez, J.L.: Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 46, 1822–1835 (2008)CrossRefGoogle Scholar
  10. 10.
    Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. 1st edn. MIT Press, Cambridge (2006)Google Scholar
  11. 11.
    Camps-Valls, G., Bruzzone, L., Rojo-Álvarez, J.L., Melgani, F.: Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geosci. Remote Sens. Lett. 3, 339–343 (2006)CrossRefGoogle Scholar
  12. 12.
    Zortea, M., De Martino, M., Moser, G., Serpico, S.B.: Land surface temperature estimation from infrared satellite data using support vector machines. In: Proceedings of the IGARSS-2006 Symposium, pp. 2109–2112, Denver, USA (2003)Google Scholar
  13. 13.
    Durbh, S.S., King, R.L., Younan, N.H.: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007)CrossRefGoogle Scholar
  14. 14.
    Yang, F., White, M., Michaelis, A., Ichii, K., Hashimoto, H., Votava, P., Zhu, A.X., Nemani, R.: Prediction of continental-scale evapotranspiration by combining MODIS and Ameri Flux data through support vector machine. IEEE Trans. Geosci. Remote Sens. 44, 3452–3461 (2006)CrossRefGoogle Scholar
  15. 15.
    Broadwater, J., Chellappa, R., Banerjee, A., Burlina, P.: Kernel fully constrained least squares abundance estimates. In: Proceedings of the IGARSS-2007 Symposium, Barcelona, Spain (2007)Google Scholar
  16. 16.
    Camps-Valls, G., Gomez-Chova, L., Vila-Francés, J., Amorós-López, J., Muñoz-Marí, J., Calpe-Maravilla, J.: Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sens. Environ. 105, 23–33 (2006)CrossRefGoogle Scholar
  17. 17.
    Pasolli, L., Melgani, F., Blanzieri, E.: Estimating biophysical parameters from remotely sensed imagery with Gaussian processes. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS’08, Boston, USA (2008)Google Scholar
  18. 18.
    Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Calpe-Maravilla, J.: Biophysical parameter estimation with adaptive Gaussian processes. In: IEEE International Geoscience & Remote Sensing Symposium, IGARSS’2009, Capetown, South Africa (2009)Google Scholar
  19. 19.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  20. 20.
    Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences). The Johns Hopkins University Press, Baltimore (1996)Google Scholar
  21. 21.
    Reed, M.C., Simon, B.: Functional Analysis. Volume I of Methods of Modern Mathematical Physics. Academic Press, New York (1980)Google Scholar
  22. 22.
    Huang, C., Davis, L., Townshend, J.: An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 23(4), 725–749 (2002)CrossRefGoogle Scholar
  23. 23.
    Foody, G.M., Mathur, A.: Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens. Environ. 93, 107–117 (2004)CrossRefGoogle Scholar
  24. 24.
    Fauvel, M., Chanussot, J., Benediktsson, J.A.: Evaluation of kernels for multiclass classification of hyperspectral remote sensing data. In: IEEE ICASSP—International conference on Acoustics, Speech and Signal Processing, pp. II-813–II-816, Toulouse, France (2006)Google Scholar
  25. 25.
    Inglada, J.: Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J. Photogramm. Rem. Sens. 62, 236–248 (2007)CrossRefGoogle Scholar
  26. 26.
    Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3, 93–97 (2006)CrossRefGoogle Scholar
  27. 27.
    Chi, M., Feng, R., Bruzzone, L.: Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 41(11), 1793–1799 (2008)CrossRefGoogle Scholar
  28. 28.
    Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRefGoogle Scholar
  29. 29.
    Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)CrossRefGoogle Scholar
  30. 30.
    Tax, D., Duin, R.P.: Support vector domain description. Pattern Recognit. Lett. 20, 1191–1199 (1999)CrossRefGoogle Scholar
  31. 31.
    Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems 12, Denver, CO (1999)Google Scholar
  32. 32.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)Google Scholar
  33. 33.
    Hastie, T., Tibishirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)zbMATHGoogle Scholar
  34. 34.
    Gómez-Chova, L., Fernández-Prieto, D., Calpe, J., Soria, E., Vila-Francés, J., Camps-Valls, G.: Urban monitoring using multitemporal SAR and multispectral data. Pattern Recognit. Lett. 27, 234–243 (2006) 3rd Pattern Recognition in Remote Sensing Workshop, Kingston Upon Thames, England, Aug 27, 2004Google Scholar
  35. 35.
    Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed data: Principles and Practices. Lewis Publishers, Boca Raton (1999)Google Scholar
  36. 36.
    Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, USA (2005)∼jerryzhu/pub/ssl_survey.pdf
  37. 37.
    Chapelle, O., Weston, J., Schölkopf, B.: Cluster kernels for semi-supervised learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS 2002, vol. 15, pp. 585–592. MIT Press, Cambridge (2003)Google Scholar
  38. 38.
    Seeger, M.: Learning with labeled and unlabeled data. Technical Report TR.2001, Institute for Adaptive and Neural Computation, University of Edinburg (2001)Google Scholar
  39. 39.
    Jackson, Q., Landgrebe, D.: An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Trans. Geosci. Remote Sens. 39, 2664–2679 (2001)CrossRefGoogle Scholar
  40. 40.
    Bruzzone, L., Chi, M., Marconcini, M.: A novel transductive SVM for the semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 44, 3363–3373 (2006)CrossRefGoogle Scholar
  41. 41.
    Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, NIPS2004, vol. 16. MIT Press, Vancouver (2004)Google Scholar
  42. 42.
    Camps-Valls, G., Bandos, T., Zhou, D.: Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 45, 2044–3054 (2007)CrossRefGoogle Scholar
  43. 43.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetGoogle Scholar
  44. 44.
    Gómez-Chova, L., Camps-Valls, G., Muñoz-Marí, J., Calpe-Maravilla, J.: Semi-supervised image classification with Laplacian support vector machines. IEEE Geosci. Remote Sens. Lett. 5, 336–340 (2008)CrossRefGoogle Scholar
  45. 45.
    Gómez-Chova, L., Camps-Valls, G., Bruzzone, L., Calpe-Maravilla, J.: Mean map kernel methods for semisupervised cloud classification. IEEE Trans. Geosci. Remote Sens. 48, 207–220 (2010)CrossRefGoogle Scholar
  46. 46.
    Tuia, D., Camps-Valls, G.: Semisupervised remote sensing image classification with cluster kernels. Geosci. Remote Sens. Lett. IEEE 6, 224–228 (2009)CrossRefGoogle Scholar
  47. 47.
    Tikhonov, A.N.: Regularization of incorrectly posed problems. Sov. Math. Dokl. 4, 1624–1627 (1963)zbMATHGoogle Scholar
  48. 48.
    Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector machines. Adv. Comput. Math. 13, 1–50 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. 6th Edition. Wiley, New York (2008)Google Scholar
  50. 50.
    Kimes, D., Knyazikhin, Y., Privette, J., Abuelgasim, A., Gao, F.: Inversion methods for physically-based models. Remote Sens. Rev. 18, 381–439 (2000)Google Scholar
  51. 51.
    Keiner, L.E.: Estimating oceanic chlorophyll concentrations with neural networks. Int. J. Remote Sens. 20, 189–194 (1999)CrossRefGoogle Scholar
  52. 52.
    Dzwonkowski, B., Yan, X.H.: Development and application of a neural network based colour algorithm in coastal waters. Int. J. Remote. Sens. 26, 1175–1200 (2005)CrossRefGoogle Scholar
  53. 53.
    Camps-Valls, G., Muñoz-Marí, J., Gómez-Chova, L., Richter, K., Calpe-Maravilla, J.: Biophysical parameter estimation with a semisupervised support vector machine. IEEE Geosci. Remote Sens. Lett. 6, 248–252 (2009)CrossRefGoogle Scholar
  54. 54.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Kwiatkowska, E., Fargion, G.: Application of machine-learning techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data. IEEE Trans. Geosci. Remote Sens. 41, 2844–2860 (2003)CrossRefGoogle Scholar
  56. 56.
    Zhan, H., Shi, P., Chen, C.: Retrieval of oceanic chlorophyll concentration using support vector machines. IEEE Trans. Geosci. Remote Sens. 41, 2947–2951 (2003)CrossRefGoogle Scholar
  57. 57.
    Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, Inc. 2nd Edition (1987)Google Scholar
  58. 58.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience Publications. Wiley, New York (1953)Google Scholar
  59. 59.
    Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    O’Hagan, A.: Bayesian Inference, Volume 2B of Kendall’s Advanced Theory of Statistics. Arnold, London, United Kingdom (1994)Google Scholar
  61. 61.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series B 39, 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  62. 62.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, New York (2006)zbMATHGoogle Scholar
  63. 63.
    Furfaro, R., Morris, R.D., Kottas, A., Taddy, M., Ganapol, B.D.: A Gaussian Process Approach to Quantifying the Uncertainty of Vegetation Parameters from Remote Sensing Observations. AGU Fall Meeting Abstracts A261 (1977)Google Scholar
  64. 64.
    O’Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K., Garver, S.A., Kahru, M., McClain, C.: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 103, 24937–24953 (1998)CrossRefGoogle Scholar
  65. 65.
    Cipollini, P., Corsini, G., Diani, M., Grass, R.: Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks. IEEE Trans. Geosci. Remote Sens. 39, 1508–1524 (2001)CrossRefGoogle Scholar
  66. 66.
    Maritorena, S., O’Reilly, J.: In: OC2v2: Update on the initial operational SeaWiFS chlorophyll a algorithm. In: Hooker, S.B., Firestone, E.R. (eds.) SeaWiFS Postlaunch Calibration and Validation Analyses, NASA Goddard Space Flight Center. Wiley, Greenbelt Part 3. NASA Tech. Memo. 2000-206892, vol. 11, pp. 3–8 (2000) Google Scholar
  67. 67.
    Camps-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. Wiley, New York (2009)CrossRefzbMATHGoogle Scholar
  68. 68.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)Google Scholar
  69. 69.
    Wold, S., Albano, C., Dunn, W.J., Edlund, U., Esbensen, K., Geladi, P., Hellberg, S., Johansson, E., Lindberg, W., Sjostrom, M.: Multivariate data analysis in chemistry. In: Kowalski, B.R. (ed.) Chemometrics, Mathematics and Statistics in Chemistry, pp. 17–95. Reidel Publishing Company, Boston (1984)Google Scholar
  70. 70.
    Arenas-García, J., Camps-Valls, G.: Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 46, 2872 –2881 (2008)CrossRefGoogle Scholar
  71. 71.
    Tuia, D., Ratle, F., Pozdnoukhov, A., Camps-Valls, G.: Multisource composite kernels for urban image classification. IEEE Geosci. Remote Sens. Lett. 6(2), 234–238 (2009)CrossRefGoogle Scholar
  72. 72.
    Lancricket, G., Bie, T.D., Cristianini, N., Jordan, M., Noble, W.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)CrossRefGoogle Scholar
  73. 73.
    Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)MathSciNetGoogle Scholar
  74. 74.
    Villa, A., Fauvel, M., Chanussot, J., Gamba, P., Benediktsson, J.A.: Gradient optimization for multiple kernel parameters in support vector machines classification. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS (2008)Google Scholar
  75. 75.
    Guo, B., Gunn, S., Damper, R.I., Nelson, J.D.B.: Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Trans. Image Process. 17, 622–629 (2008)CrossRefMathSciNetGoogle Scholar
  76. 76.
    Bruzzone, L., Prieto, D.: Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images. IEEE Trans. Geosci. Remote Sens. 39, 456–460 (2001)CrossRefGoogle Scholar
  77. 77.
    Bruzzone, L., Cossu, R.: A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Trans. Geosci. Remote Sens. 40, 1984–1996 (2002)CrossRefGoogle Scholar
  78. 78.
    Bruzzone, L., Marconcini, M.: Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy. IEEE Trans. Geosci. Remote Sens. 47, 1108–1122 (2009)CrossRefGoogle Scholar
  79. 79.
    Blaschko, M., Lampert, C.: Learning to localize objects with structured output regression. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision: ECCV 2008, pp. 2–15. Springer, Heidelberg (2008)Google Scholar
  80. 80.
    Tuia, D., Kanevski, M., Muñoz Marí, J., Camps-Valls, G.: Structured SVM for remote sensing image classification. In: IEEE Workshop on Machine Learning for Signal Processing (MLSP09), Grenoble, France (2009)Google Scholar
  81. 81.
    Mitra, P., Uma Shankar, B., Pal, S.: Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recogn. Lett. 25, 1067–1074 (2004)CrossRefGoogle Scholar
  82. 82.
    Rajan, S., Ghosh, J., Crawford, M.M.: An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 46(4), 1231–1242 (2008)CrossRefGoogle Scholar
  83. 83.
    Jun, G., Ghosh, J.: An efficient active learning algorithm with knowledge transfer for hyperspectral remote sensing data. In: Proceedings of the IEEE Geoscience Remote Sensing Symposium IGARSS (2008)Google Scholar
  84. 84.
    Zhang, C., Franklin, S., Wulder, M.: Geostatistical and texture analysis of airborne-acquired images used in forest classification. Int. J. Remote Sens. 25, 859–865 (2004)CrossRefGoogle Scholar
  85. 85.
    Liu, Q., Liao, X., Carin, L.: Detection of unexploded ordnance via efficient semisupervised and active learning. IEEE Trans. Geosci. Remote Sens. 46(9), 2558–2567 (2008)CrossRefGoogle Scholar
  86. 86.
    Tuia, D., Ratle, F., Pacifici, F., Kanevski, M., Emery, W.: Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 47, 2218–2232 (2009)CrossRefGoogle Scholar
  87. 87.
    Brazile, J., Schaepman, M.E., Schläpfer, D., Kaiser, J.W., Nieke, J., Itten, K.I.: Cluster versus grid for large-volume hyperspectral image preprocessing. In: Huang, H.L.A., Bloom, H.J. (eds.) Atmospheric and Environmental Remote Sensing Data Processing and Utilization: an End-to-End System Perspective. Edited by Huang, Hung-Lung A.; Bloom, Hal J. In: Proceedings of the SPIE, vol. 5548, pp. 48–58 (2004). Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 5548, pp. 48–58. (2004)Google Scholar
  88. 88.
    Gualtieri, J.A.: A parallel processing algorithm for remote sensing classification. Technical report, Summaries of the Airborne Earth Science Workshop, Pasadena, USA (2004)
  89. 89.
    Plaza, A., Chang, C.I.: High Performance Computing in Remote Sensing. Chapman & Hall/CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  90. 90.
    Muñoz, J., Plaza, A., Gualtieri, J.A., Camps-Valls, G.: Parallel implementation of SVM in earth observation applications. In: Xhafa, F. (ed.) Parallel Programming and Applications in Grid, P2P and Networking systems, pp. 292–312. IOS Press, UK (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luis Gómez-Chova
    • 1
  • Jordi Muñoz-Marí
    • 1
  • Valero Laparra
    • 1
  • Jesús Malo-López
    • 1
  • Gustavo Camps-Valls
    • 1
  1. 1.Image Processing LaboratoryUniversitat de ValènciaValenciaSpain

Personalised recommendations