Skip to main content

A Review of Kernel Methods in Remote Sensing Data Analysis

  • Chapter
  • First Online:

Part of the book series: Augmented Vision and Reality ((Augment Vis Real,volume 3))

Abstract

Kernel methods have proven effective in the analysis of images of the Earth acquired by airborne and satellite sensors. Kernel methods provide a consistent and well-founded theoretical framework for developing nonlinear techniques and have useful properties when dealing with low number of (potentially high dimensional) training samples, the presence of heterogenous multimodalities, and different noise sources in the data. These properties are particularly appropriate for remote sensing data analysis. In fact, kernel methods have improved results of parametric linear methods and neural networks in applications such as natural resource control, detection and monitoring of anthropic infrastructures, agriculture inventorying, disaster prevention and damage assessment, anomaly and target detection, biophysical parameter estimation, band selection, and feature extraction. This chapter provides a survey of applications and recent theoretical developments of kernel methods in the context of remote sensing data analysis. The specific methods developed in the fields of supervised classification, semisupervised classification, target detection, model inversion, and nonlinear feature extraction are revised both theoretically and through experimental (illustrative) examples. The emergent fields of transfer, active, and structured learning, along with efficient parallel implementations of kernel machines, are also revised.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In v-fold, the training set is divided in v subsets, then during v times v − 1 subsets are used for training, and the remaining subset is used for validation. At the end, the parameters that have worked the best in the v subsets are selected.

  2. 2.

    In our case, nearby points are those pixels spectrally similar and thus the assumption is applied to the (high) dimensional space of image pixels.

  3. 3.

    \(\log p(\mathbf{y}|\mathbf{x}) \equiv \log p(\mathbf{y}|\mathbf{x},\varvec{\theta}) = -{\frac{1}{2}}\mathbf{y}^\top(\mathbf{K} + \sigma_n^2\mathbf{I})^{-1}\mathbf{y} - {\frac{1}{2}}\log(det(\mathbf{K} +\sigma_n^2 \mathbf{I})) - {\frac{n}{2}}\log(2\pi).\)

  4. 4.

    More information about the data can be obtained from http://seabass.gsfc.nasa.gov/seabam/seabam.html.

References

  1. Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis. An Introduction, 3rd edn. Springer, Berlin (1999)

    Google Scholar 

  2. Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14, 55–63 (1968)

    Article  Google Scholar 

  3. Fukunaga, K., Hayes, R.R.: Effects of sample size in classifier design. IEEE Trans. Pattern Anal. Mach. Intell. 11, 873–885 (1989)

    Article  Google Scholar 

  4. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  5. Schölkopf, B., Smola, A.: Learning with Kernels – Support Vector Machines, Regularization, Optimization and Beyond. MIT Press Series, Cambridge (2002)

    Google Scholar 

  6. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43, 1351–1362 (2005)

    Article  Google Scholar 

  7. Mercier, G., Girard-Ardhuin, F.: Partially supervised oil-slick detection by SAR imagery using kernel expansion. IEEE Trans. Geosci. Remote Sens. 44, 2839–2846 (2006)

    Article  Google Scholar 

  8. Muñoz Marí, J., Bruzzone, L., Camps-Valls, G.: A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 45, 2683–2692 (2007)

    Article  Google Scholar 

  9. Camps-Valls, G., Gómez-Chova, L., Muñoz Marí, J., Martínez-Ramón, M., Rojo-Álvarez, J.L.: Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 46, 1822–1835 (2008)

    Article  Google Scholar 

  10. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. 1st edn. MIT Press, Cambridge (2006)

    Google Scholar 

  11. Camps-Valls, G., Bruzzone, L., Rojo-Álvarez, J.L., Melgani, F.: Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geosci. Remote Sens. Lett. 3, 339–343 (2006)

    Article  Google Scholar 

  12. Zortea, M., De Martino, M., Moser, G., Serpico, S.B.: Land surface temperature estimation from infrared satellite data using support vector machines. In: Proceedings of the IGARSS-2006 Symposium, pp. 2109–2112, Denver, USA (2003)

    Google Scholar 

  13. Durbh, S.S., King, R.L., Younan, N.H.: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007)

    Article  Google Scholar 

  14. Yang, F., White, M., Michaelis, A., Ichii, K., Hashimoto, H., Votava, P., Zhu, A.X., Nemani, R.: Prediction of continental-scale evapotranspiration by combining MODIS and Ameri Flux data through support vector machine. IEEE Trans. Geosci. Remote Sens. 44, 3452–3461 (2006)

    Article  Google Scholar 

  15. Broadwater, J., Chellappa, R., Banerjee, A., Burlina, P.: Kernel fully constrained least squares abundance estimates. In: Proceedings of the IGARSS-2007 Symposium, Barcelona, Spain (2007)

    Google Scholar 

  16. Camps-Valls, G., Gomez-Chova, L., Vila-Francés, J., Amorós-López, J., Muñoz-Marí, J., Calpe-Maravilla, J.: Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sens. Environ. 105, 23–33 (2006)

    Article  Google Scholar 

  17. Pasolli, L., Melgani, F., Blanzieri, E.: Estimating biophysical parameters from remotely sensed imagery with Gaussian processes. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS’08, Boston, USA (2008)

    Google Scholar 

  18. Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Calpe-Maravilla, J.: Biophysical parameter estimation with adaptive Gaussian processes. In: IEEE International Geoscience & Remote Sensing Symposium, IGARSS’2009, Capetown, South Africa (2009)

    Google Scholar 

  19. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  20. Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences). The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  21. Reed, M.C., Simon, B.: Functional Analysis. Volume I of Methods of Modern Mathematical Physics. Academic Press, New York (1980)

    Google Scholar 

  22. Huang, C., Davis, L., Townshend, J.: An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 23(4), 725–749 (2002)

    Article  Google Scholar 

  23. Foody, G.M., Mathur, A.: Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens. Environ. 93, 107–117 (2004)

    Article  Google Scholar 

  24. Fauvel, M., Chanussot, J., Benediktsson, J.A.: Evaluation of kernels for multiclass classification of hyperspectral remote sensing data. In: IEEE ICASSP—International conference on Acoustics, Speech and Signal Processing, pp. II-813–II-816, Toulouse, France (2006)

    Google Scholar 

  25. Inglada, J.: Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J. Photogramm. Rem. Sens. 62, 236–248 (2007)

    Article  Google Scholar 

  26. Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3, 93–97 (2006)

    Article  Google Scholar 

  27. Chi, M., Feng, R., Bruzzone, L.: Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 41(11), 1793–1799 (2008)

    Article  Google Scholar 

  28. Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  29. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)

    Article  Google Scholar 

  30. Tax, D., Duin, R.P.: Support vector domain description. Pattern Recognit. Lett. 20, 1191–1199 (1999)

    Article  Google Scholar 

  31. Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems 12, Denver, CO (1999)

    Google Scholar 

  32. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Google Scholar 

  33. Hastie, T., Tibishirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  34. Gómez-Chova, L., Fernández-Prieto, D., Calpe, J., Soria, E., Vila-Francés, J., Camps-Valls, G.: Urban monitoring using multitemporal SAR and multispectral data. Pattern Recognit. Lett. 27, 234–243 (2006) 3rd Pattern Recognition in Remote Sensing Workshop, Kingston Upon Thames, England, Aug 27, 2004

    Google Scholar 

  35. Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed data: Principles and Practices. Lewis Publishers, Boca Raton (1999)

    Google Scholar 

  36. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, USA (2005) http://www.cs.wisc.edu/∼jerryzhu/pub/ssl_survey.pdf

  37. Chapelle, O., Weston, J., Schölkopf, B.: Cluster kernels for semi-supervised learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS 2002, vol. 15, pp. 585–592. MIT Press, Cambridge (2003)

    Google Scholar 

  38. Seeger, M.: Learning with labeled and unlabeled data. Technical Report TR.2001, Institute for Adaptive and Neural Computation, University of Edinburg (2001)

    Google Scholar 

  39. Jackson, Q., Landgrebe, D.: An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Trans. Geosci. Remote Sens. 39, 2664–2679 (2001)

    Article  Google Scholar 

  40. Bruzzone, L., Chi, M., Marconcini, M.: A novel transductive SVM for the semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 44, 3363–3373 (2006)

    Article  Google Scholar 

  41. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, NIPS2004, vol. 16. MIT Press, Vancouver (2004)

    Google Scholar 

  42. Camps-Valls, G., Bandos, T., Zhou, D.: Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 45, 2044–3054 (2007)

    Article  Google Scholar 

  43. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  Google Scholar 

  44. Gómez-Chova, L., Camps-Valls, G., Muñoz-Marí, J., Calpe-Maravilla, J.: Semi-supervised image classification with Laplacian support vector machines. IEEE Geosci. Remote Sens. Lett. 5, 336–340 (2008)

    Article  Google Scholar 

  45. Gómez-Chova, L., Camps-Valls, G., Bruzzone, L., Calpe-Maravilla, J.: Mean map kernel methods for semisupervised cloud classification. IEEE Trans. Geosci. Remote Sens. 48, 207–220 (2010)

    Article  Google Scholar 

  46. Tuia, D., Camps-Valls, G.: Semisupervised remote sensing image classification with cluster kernels. Geosci. Remote Sens. Lett. IEEE 6, 224–228 (2009)

    Article  Google Scholar 

  47. Tikhonov, A.N.: Regularization of incorrectly posed problems. Sov. Math. Dokl. 4, 1624–1627 (1963)

    MATH  Google Scholar 

  48. Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector machines. Adv. Comput. Math. 13, 1–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. 6th Edition. Wiley, New York (2008)

    Google Scholar 

  50. Kimes, D., Knyazikhin, Y., Privette, J., Abuelgasim, A., Gao, F.: Inversion methods for physically-based models. Remote Sens. Rev. 18, 381–439 (2000)

    Google Scholar 

  51. Keiner, L.E.: Estimating oceanic chlorophyll concentrations with neural networks. Int. J. Remote Sens. 20, 189–194 (1999)

    Article  Google Scholar 

  52. Dzwonkowski, B., Yan, X.H.: Development and application of a neural network based colour algorithm in coastal waters. Int. J. Remote. Sens. 26, 1175–1200 (2005)

    Article  Google Scholar 

  53. Camps-Valls, G., Muñoz-Marí, J., Gómez-Chova, L., Richter, K., Calpe-Maravilla, J.: Biophysical parameter estimation with a semisupervised support vector machine. IEEE Geosci. Remote Sens. Lett. 6, 248–252 (2009)

    Article  Google Scholar 

  54. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  55. Kwiatkowska, E., Fargion, G.: Application of machine-learning techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data. IEEE Trans. Geosci. Remote Sens. 41, 2844–2860 (2003)

    Article  Google Scholar 

  56. Zhan, H., Shi, P., Chen, C.: Retrieval of oceanic chlorophyll concentration using support vector machines. IEEE Trans. Geosci. Remote Sens. 41, 2947–2951 (2003)

    Article  Google Scholar 

  57. Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, Inc. 2nd Edition (1987)

    Google Scholar 

  58. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience Publications. Wiley, New York (1953)

    Google Scholar 

  59. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  60. O’Hagan, A.: Bayesian Inference, Volume 2B of Kendall’s Advanced Theory of Statistics. Arnold, London, United Kingdom (1994)

    Google Scholar 

  61. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  62. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, New York (2006)

    MATH  Google Scholar 

  63. Furfaro, R., Morris, R.D., Kottas, A., Taddy, M., Ganapol, B.D.: A Gaussian Process Approach to Quantifying the Uncertainty of Vegetation Parameters from Remote Sensing Observations. AGU Fall Meeting Abstracts A261 (1977)

    Google Scholar 

  64. O’Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K., Garver, S.A., Kahru, M., McClain, C.: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 103, 24937–24953 (1998)

    Article  Google Scholar 

  65. Cipollini, P., Corsini, G., Diani, M., Grass, R.: Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks. IEEE Trans. Geosci. Remote Sens. 39, 1508–1524 (2001)

    Article  Google Scholar 

  66. Maritorena, S., O’Reilly, J.: In: OC2v2: Update on the initial operational SeaWiFS chlorophyll a algorithm. In: Hooker, S.B., Firestone, E.R. (eds.) SeaWiFS Postlaunch Calibration and Validation Analyses, NASA Goddard Space Flight Center. Wiley, Greenbelt Part 3. NASA Tech. Memo. 2000-206892, vol. 11, pp. 3–8 (2000)

    Google Scholar 

  67. Camps-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  68. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  69. Wold, S., Albano, C., Dunn, W.J., Edlund, U., Esbensen, K., Geladi, P., Hellberg, S., Johansson, E., Lindberg, W., Sjostrom, M.: Multivariate data analysis in chemistry. In: Kowalski, B.R. (ed.) Chemometrics, Mathematics and Statistics in Chemistry, pp. 17–95. Reidel Publishing Company, Boston (1984)

    Google Scholar 

  70. Arenas-García, J., Camps-Valls, G.: Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 46, 2872 –2881 (2008)

    Article  Google Scholar 

  71. Tuia, D., Ratle, F., Pozdnoukhov, A., Camps-Valls, G.: Multisource composite kernels for urban image classification. IEEE Geosci. Remote Sens. Lett. 6(2), 234–238 (2009)

    Article  Google Scholar 

  72. Lancricket, G., Bie, T.D., Cristianini, N., Jordan, M., Noble, W.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)

    Article  Google Scholar 

  73. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)

    MathSciNet  Google Scholar 

  74. Villa, A., Fauvel, M., Chanussot, J., Gamba, P., Benediktsson, J.A.: Gradient optimization for multiple kernel parameters in support vector machines classification. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS (2008)

    Google Scholar 

  75. Guo, B., Gunn, S., Damper, R.I., Nelson, J.D.B.: Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Trans. Image Process. 17, 622–629 (2008)

    Article  MathSciNet  Google Scholar 

  76. Bruzzone, L., Prieto, D.: Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images. IEEE Trans. Geosci. Remote Sens. 39, 456–460 (2001)

    Article  Google Scholar 

  77. Bruzzone, L., Cossu, R.: A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Trans. Geosci. Remote Sens. 40, 1984–1996 (2002)

    Article  Google Scholar 

  78. Bruzzone, L., Marconcini, M.: Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy. IEEE Trans. Geosci. Remote Sens. 47, 1108–1122 (2009)

    Article  Google Scholar 

  79. Blaschko, M., Lampert, C.: Learning to localize objects with structured output regression. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision: ECCV 2008, pp. 2–15. Springer, Heidelberg (2008)

    Google Scholar 

  80. Tuia, D., Kanevski, M., Muñoz Marí, J., Camps-Valls, G.: Structured SVM for remote sensing image classification. In: IEEE Workshop on Machine Learning for Signal Processing (MLSP09), Grenoble, France (2009)

    Google Scholar 

  81. Mitra, P., Uma Shankar, B., Pal, S.: Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recogn. Lett. 25, 1067–1074 (2004)

    Article  Google Scholar 

  82. Rajan, S., Ghosh, J., Crawford, M.M.: An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 46(4), 1231–1242 (2008)

    Article  Google Scholar 

  83. Jun, G., Ghosh, J.: An efficient active learning algorithm with knowledge transfer for hyperspectral remote sensing data. In: Proceedings of the IEEE Geoscience Remote Sensing Symposium IGARSS (2008)

    Google Scholar 

  84. Zhang, C., Franklin, S., Wulder, M.: Geostatistical and texture analysis of airborne-acquired images used in forest classification. Int. J. Remote Sens. 25, 859–865 (2004)

    Article  Google Scholar 

  85. Liu, Q., Liao, X., Carin, L.: Detection of unexploded ordnance via efficient semisupervised and active learning. IEEE Trans. Geosci. Remote Sens. 46(9), 2558–2567 (2008)

    Article  Google Scholar 

  86. Tuia, D., Ratle, F., Pacifici, F., Kanevski, M., Emery, W.: Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 47, 2218–2232 (2009)

    Article  Google Scholar 

  87. Brazile, J., Schaepman, M.E., Schläpfer, D., Kaiser, J.W., Nieke, J., Itten, K.I.: Cluster versus grid for large-volume hyperspectral image preprocessing. In: Huang, H.L.A., Bloom, H.J. (eds.) Atmospheric and Environmental Remote Sensing Data Processing and Utilization: an End-to-End System Perspective. Edited by Huang, Hung-Lung A.; Bloom, Hal J. In: Proceedings of the SPIE, vol. 5548, pp. 48–58 (2004). Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 5548, pp. 48–58. (2004)

    Google Scholar 

  88. Gualtieri, J.A.: A parallel processing algorithm for remote sensing classification. Technical report, Summaries of the Airborne Earth Science Workshop, Pasadena, USA (2004) http://aviris.jpl.nasa.gov/html/aviris/documents.html

  89. Plaza, A., Chang, C.I.: High Performance Computing in Remote Sensing. Chapman & Hall/CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  90. Muñoz, J., Plaza, A., Gualtieri, J.A., Camps-Valls, G.: Parallel implementation of SVM in earth observation applications. In: Xhafa, F. (ed.) Parallel Programming and Applications in Grid, P2P and Networking systems, pp. 292–312. IOS Press, UK (2009)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by projects CICYT-FEDER TEC2009-13696, AYA2008-05965-C04-03, and CSD2007-00018. Valero Laparra acknowledges the support of a Ph.D grant from the Spanish Government BES-2007-16125. The authors would like to thank a number of colleagues and collaborators in the field of kernel methods, and whose insight and points of view are at some extent reflected in this chapter: Dr. Devis Tuia from the University of Lausanne (Switzerland), Dr. Frédéric Ratle from Nuance Communications (Belgium), Dr. Jerónimo Arenas from the University Carlos III de Madrid (Spain), and Prof. Lorenzo Bruzzone from the University of Trento (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Gómez-Chova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gómez-Chova, L., Muñoz-Marí, J., Laparra, V., Malo-López, J., Camps-Valls, G. (2011). A Review of Kernel Methods in Remote Sensing Data Analysis. In: Prasad, S., Bruce, L., Chanussot, J. (eds) Optical Remote Sensing. Augmented Vision and Reality, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14212-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14212-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14211-6

  • Online ISBN: 978-3-642-14212-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics