Optical Remote Sensing pp 1-8

Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 3)

Introduction

  • Saurabh Prasad
  • Lori M. Bruce
  • Jocelyn Chanussot
Chapter

Abstract

As the name suggests, remote sensing entails the use of sensing instruments for acquiring information remotely about an area of interest on the ground. The term “information” can refer to a wide variety of observable quantities (signals), such as reflected solar radiation across the electromagnetic spectrum and emitted thermal radiation from the earth’s surface as measured from handheld [1], airborne [2] or spaceborne imaging sensors [3, 4]; received back-scattered microwave radiation from radio detection and ranging (RADAR), synthetic aperture radar (SAR) [5, 6, 7, 8] or light detection and ranging (LIDAR) [9, 10, 11] equipment; electrical conductivity as measured from airborne sensors, etc. Availability and effective exploitation of such data has facilitated advances in applied fields such as weather prediction, invasive species management, precision agriculture, urban planning, etc.

References

  1. 1.
    Analytical Spectral Devices FieldspecPro FR specifications. Available: http://asdi.com/productsspecifications-FSP.asp
  2. 2.
    Green, R., Eastwood, M., Sarture, C., Chrien, T., Aronsson, M., Chippendale, B., Faust, J., Pavri, B., Chouit, C., Solis, M., Olah, M., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectromter (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998)CrossRefGoogle Scholar
  3. 3.
    HYPERION instrument specifications, available: http://eo1.gsfc.nasa.gov/Technology/Hyperion.html
  4. 4.
    Pearlman, J., Segal, C., Liao, L., Carman, S., Folkman, M., Browne, B., Ong, L., Ungar, S.: Development and operations of the EO-1 hyperion imaging spectrometer. Proc. Earth Observ. Syst. V SPIE 4135, 243–253 (2000)Google Scholar
  5. 5.
    Bruzzone, L., Marconcini, M., Wegmuller, U., Wiesmann, A.: An advanced system for the automatic classification of multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 42, 1321–1334 (2004)CrossRefGoogle Scholar
  6. 6.
    Chanussot, J., Mauris, G., Lambert, P.: Fuzzy fusion techniques for linear features detection in multi-temporal SAR images. IEEE Trans. Geosci. Remote Sens. 37, 1292–1305 (1999)CrossRefGoogle Scholar
  7. 7.
    Pellizzeri, T.M., Gamba, P., Lombardo, P., Dell’Acqua, F.: Multitemporal/multiband SAR classification of urban areas using spatial analysis: statistical versus neural kernel-based approach. IEEE Trans. Geosci. Remote Sens. 41, 2338–2353 (2003)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    CALIPSO—Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, Available: http://www-calipso.larc.nasa.gov/
  10. 10.
    Winker, D.M., Pelon, J., McCormick, M.P.: The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. Proceedings of SPIE, vol. 4893 (2003)Google Scholar
  11. 11.
    Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J.: Lidar remote sensing for ecosystem studies. BioScience 52, 19–30 (2002)CrossRefGoogle Scholar
  12. 12.
    Jensen, J.: Remote Sensing of the Environment: An Earth Resource Perspective. Prentice Hall, Englewood Cliffs (2006)Google Scholar
  13. 13.
    Campbell, J.B.: Introduction to Remote Sensing. The Guilford Press, New York (2002)Google Scholar
  14. 14.
    Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis: An Introduction. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Goetz, A., Vane, G., Solomon, J., Rock, B.: Imaging spectroscopy for earth remote sensing. Science 228, 1147–1153 (1985)CrossRefGoogle Scholar
  16. 16.
    Nischan, M., Kerekes, J., Baum, J., Basedow, R.: Analysis of HYDICE noise characteristics and their impact on subpixel object detection. Proc. Imaging Spect. V, SPIE 3753, 112–123 (1999)Google Scholar
  17. 17.
    Rickard, L., Basedow, R., Zalewski, E., Silverglate, P., Landers, M.: HYDICE: an airborne system for hyperspectral imaging. Proc. Imaging Spect. Terrestr. Environ. SPIE 1937, 173–179 (1993)Google Scholar
  18. 18.
    Schott, J.: Remote Sensing: The Image Chain Approach. Oxford University Press, New York (2006)Google Scholar
  19. 19.
    Lucas, R., Rowlands, A., Niemann, O., Merton, R.: Hyperspectral sensors and applications, Chapter 1. In: Varshney, P.K., Arora, M.K. (eds.) Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Kerekes, J., Schott, J.R.: Hyperspectral imaging systems, Chapter 2. In: Chang, C.I. (ed.) Hyperspectral Data Exploitation: Theory and Applications. Wiley, New Jersey (2007)Google Scholar
  21. 21.
    Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19, 17–28 (2002)CrossRefGoogle Scholar
  22. 22.
    Shaw, G., Manolakis, D.: Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag. 19, 12–16 (2002)CrossRefGoogle Scholar
  23. 23.
    Chang, C.I.: Hyperspectral Data Exploitation: Theory and Applications. Wiley, New York (2007)Google Scholar
  24. 24.
    Kerekes, J., Baum, J.E.: Spectral imaging system analytical model for sub-pixel object detection. IEEE Trans. Geosci. Remote Sens. 40, 1088–1101 (2002)CrossRefGoogle Scholar
  25. 25.
    Varshney, P.K., Arora, M.K.: Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Kerekes, J., Baum, J.E.: Full spectrum spectral imaging system analytical model. IEEE Trans. Geosci. Remote Sens. 43, 571–580 (2005)CrossRefGoogle Scholar
  27. 27.
    Kaufman, Y.: Atmospheric effect on spatial resolution of surface imagery. Appl. Opt. 23, 3400–3408 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Saurabh Prasad
    • 1
  • Lori M. Bruce
    • 1
  • Jocelyn Chanussot
    • 2
  1. 1.Mississippi State UniversityStarkvilleUSA
  2. 2.Grenoble Institute of TechnologyGrenobleFrance

Personalised recommendations