Skip to main content

Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches

  • Conference paper
  • First Online:
Fluid Structure Interaction II

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 73))

Abstract

Comparative benchmark results for different solution methods for fluid-structure interaction problems are given which have been developed as collaborative project in the DFG Research Unit 493. The configuration consists of a laminar incompressible channel flow around an elastic object. Based on this benchmark configuration the numerical behavior of different approaches is analyzed exemplarily. The methods considered range from decoupled approaches which combine Lattice Boltzmann methods with hp-FEM techniques, up to strongly coupled and even fully monolithic approaches which treat the fluid and structure simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. G. Ciarlet. Mathematical Elasticity. Volume I, Three-Dimensional Elasticity, volume 20 of Studies in Mathematics and its Applications. Elsevier Science Publishers B.V., Amsterdam, 1988.

    Google Scholar 

  2. Ulrich Küttler and Wolfgang A. Wall. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics, 43(1):61–72, 2008.

    Article  MATH  Google Scholar 

  3. M. Razzaq, S. Turek, J. Hron, and J. F. Acker. Numerical simulation and benchmarking of fluid-structure interaction with application to hemodynamics. In Fundamental Trends in Fluid-Structure Interaction. World Scientific Publishing Co. Pte Ltd, 2010.

    Google Scholar 

  4. M. Schäfer, M. Heck, and M. Schäfer (eds.) Fluid-Structure Interaction: Modelling Simulation Optimization 53 pp. 171-194. Springer Berlin Heidelberg Yigit, S.: An implicit partitoned method for the numerical simulation of fluid-structure interaction. In: H. J. Bungartz. 2006.

    Google Scholar 

  5. D.C. Sternel, M. Schäfer, M. Heck, and S. Yigit. Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach. Computational Mechanics, 43(1):103–113, 2008.

    Article  MATH  Google Scholar 

  6. S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LNCSE-53. Springer, 2006.

    Google Scholar 

  7. S. Turek and M. Schäfer. Benchmark computations of laminar flow around cylinder. In E.H. Hirschel, editor, Flow Simulation with High-Performance Computers II, volume 52 of Notes on Numerical Fluid Mechanics. Vieweg, 1996. co. F. Durst, E. Krause, R. Rannacher.

    Google Scholar 

  8. W. A. Wall and E. Ramm. Fluid-structure interaction based upon a stabilized (ALE) finite element method. In S. Idelsohn, E. Oñate, and E. Dvorkin, editors, 4th World Congress on Computational Mechanics: New Trends and Applications, Barcelona, 1998. CIMNE.

    Google Scholar 

  9. Wolfgang A. Wall, Daniel P. Mok, and Ekkehard Ramm. Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures. In W. Wunderlich, editor, Solids, Structures and Coupled Problems in Engineering, Proc. ECCM ’99, Munich, August/September 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Turek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this paper

Cite this paper

Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M. (2011). Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches. In: Bungartz, HJ., Mehl, M., Schäfer, M. (eds) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14206-2_15

Download citation

Publish with us

Policies and ethics