Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches

  • S. TurekEmail author
  • J. Hron
  • M. Razzaq
  • H. Wobker
  • M. Schäfer
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 73)


Comparative benchmark results for different solution methods for fluid-structure interaction problems are given which have been developed as collaborative project in the DFG Research Unit 493. The configuration consists of a laminar incompressible channel flow around an elastic object. Based on this benchmark configuration the numerical behavior of different approaches is analyzed exemplarily. The methods considered range from decoupled approaches which combine Lattice Boltzmann methods with hp-FEM techniques, up to strongly coupled and even fully monolithic approaches which treat the fluid and structure simultaneously.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. Ciarlet. Mathematical Elasticity. Volume I, Three-Dimensional Elasticity, volume 20 of Studies in Mathematics and its Applications. Elsevier Science Publishers B.V., Amsterdam, 1988.Google Scholar
  2. 2.
    Ulrich Küttler and Wolfgang A. Wall. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics, 43(1):61–72, 2008.zbMATHCrossRefGoogle Scholar
  3. 3.
    M. Razzaq, S. Turek, J. Hron, and J. F. Acker. Numerical simulation and benchmarking of fluid-structure interaction with application to hemodynamics. In Fundamental Trends in Fluid-Structure Interaction. World Scientific Publishing Co. Pte Ltd, 2010.Google Scholar
  4. 4.
    M. Schäfer, M. Heck, and M. Schäfer (eds.) Fluid-Structure Interaction: Modelling Simulation Optimization 53 pp. 171-194. Springer Berlin Heidelberg Yigit, S.: An implicit partitoned method for the numerical simulation of fluid-structure interaction. In: H. J. Bungartz. 2006.Google Scholar
  5. 5.
    D.C. Sternel, M. Schäfer, M. Heck, and S. Yigit. Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach. Computational Mechanics, 43(1):103–113, 2008.zbMATHCrossRefGoogle Scholar
  6. 6.
    S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LNCSE-53. Springer, 2006.Google Scholar
  7. 7.
    S. Turek and M. Schäfer. Benchmark computations of laminar flow around cylinder. In E.H. Hirschel, editor, Flow Simulation with High-Performance Computers II, volume 52 of Notes on Numerical Fluid Mechanics. Vieweg, 1996. co. F. Durst, E. Krause, R. Rannacher.Google Scholar
  8. 8.
    W. A. Wall and E. Ramm. Fluid-structure interaction based upon a stabilized (ALE) finite element method. In S. Idelsohn, E. Oñate, and E. Dvorkin, editors, 4th World Congress on Computational Mechanics: New Trends and Applications, Barcelona, 1998. CIMNE.Google Scholar
  9. 9.
    Wolfgang A. Wall, Daniel P. Mok, and Ekkehard Ramm. Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures. In W. Wunderlich, editor, Solids, Structures and Coupled Problems in Engineering, Proc. ECCM ’99, Munich, August/September 1999.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • S. Turek
    • 1
    Email author
  • J. Hron
    • 1
  • M. Razzaq
    • 1
  • H. Wobker
    • 1
  • M. Schäfer
    • 2
  1. 1.Institut für Angewandte Mathematik, LS IIITU DortmundDortmundGermany
  2. 2.Institut für Numerische Berechnungsverfahren im MaschinenbauTU DarmstadtDarmstadtGermany

Personalised recommendations