Global Caching for Coalgebraic Description Logics

  • Rajeev Goré
  • Clemens Kupke
  • Dirk Pattinson
  • Lutz Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)


Coalgebraic description logics offer a common semantic umbrella for extensions of description logics with reasoning principles outside relational semantics, e.g. quantitative uncertainty, non-monotonic conditionals, or coalitional power. Specifically, we work in coalgebraic logic with global assumptions (i.e. a general TBox), nominals, and satisfaction operators, and prove soundness and completeness of an associated tableau algorithm of optimal complexity ExpTime. The algorithm uses the (known) tableau rules for the underlying modal logics, and is based on on global caching, which raises hopes of practically feasible implementation. Instantiation of this result to concrete logics yields new algorithms in all cases including standard relational hybrid logic.


Modal Logic Description Logic Modal Rule Propositional Variable Hybrid Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam (2007)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Comput. 17, 517–554 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bolander, T., Braüner, T.: Tableau-based decision procedures for hybrid logic. J. Log. Comput. 16(6), 737–763 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Calin, G., Myers, R., Pattinson, D., Schröder, L.: CoLoSS: The coalgebraic logic satisfiability solver (system description). In: Methods for Modalities, M4M-5. ENTCS. Elsevier, Amsterdam (to appear, 2008)Google Scholar
  6. 6.
    Cîrstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic μ-calculus. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 179–193. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artif. Intell. 124, 87–138 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gore, R., Kupke, C., Pattinson, D.: Optimal tableau algorithms for coalgebraic logics. In: Tools and Algorithms for the Construction and Analysis of Systems, TACAS 10. LNCS. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Goré, R., Nguyen, L.: EXPTIME tableaux for \(\mathcal{ALC}\) using sound global caching. In: Description Logics, DL ’07, CEUR Workshop Proceedings, vol. 250 (2007)Google Scholar
  11. 11.
    Goré, R., Nguyen, L.: EXPTIME tableaux with global caching for description logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Horrocks, I., Patel-Schneider, P.F.: Optimising description logic subsumption. J. Logic Comput. 9, 267–293 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Myers, R., Pattinson, D., Schröder, L.: Coalgebraic hybrid logic. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pattinson, D., Schröder, L.: Cut elimination in coalgebraic logics. Inf. Comput. (to appear)Google Scholar
  17. 17.
    Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr. Prog. 73, 97–110 (2007)zbMATHCrossRefGoogle Scholar
  18. 18.
    Schröder, L., Pattinson, D.: Modular algorithms for heterogeneous modal logics. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 459–471. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 10, 13:1–13:33 (2009); Earlier version in LICS’06 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Schröder, L., Pattinson, D., Kupke, C.: Nominals for everyone. In: International Joint Conferences on Artificial Intelligence, IJCAI 09, pp. 917–922. AAAI Press, Menlo Park (2009)Google Scholar
  21. 21.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rajeev Goré
    • 1
  • Clemens Kupke
    • 2
  • Dirk Pattinson
    • 2
  • Lutz Schröder
    • 3
  1. 1.Computer Science LaboratoryThe Australian National University 
  2. 2.Department of ComputingImperial College London 
  3. 3.DFKI Bremen and Department of Computer ScienceUniversität Bremen 

Personalised recommendations