Skip to main content

Zero-One Designs Produce Small Hard SAT Instances

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2010 (SAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6175))

Abstract

Some basics of combinatorial block design are combined with certain constraint satisfaction problems of interest to the satisfiability community. The paper shows how such combinations lead to satisfiability problems, and shows empirically that these are some of the smallest very hard satisfiability problems ever constructed. Partially balanced (0,1) designs (PB01Ds) are introduced as an extension of balanced incomplete block designs (BIBDs) and (0,1) designs. Also, (0,1) difference sets are introduced as an extension of certain cyclical difference sets. Constructions based on (0,1) difference sets enable generation of PB01Ds over a much wider range of parameters than is possible for BIBDs. Building upon previous work of Spence, it is shown how PB01Ds lead to small, very hard, unsatisfiable formulas. A new three-dimensional form of combinatorial block design is introduced, and leads to small, very hard, satisfiable formulas. The methods are validated on solvers that performed well in the SAT 2009 and earlier competitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, I.: Combinatorial Designs: Construction Methods. Ellis Horwood (1990)

    Google Scholar 

  2. Colbourn, C.J., Dinitz, J.H. (eds.): CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  3. Eén, N., Sörensson, N.: MiniSat – A SAT Solver with Conflict-Clause Minimization. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: IJCAI, pp. 386–392. AAAI, Menlo Park (2007)

    Google Scholar 

  5. Kullmann, O.: Polynomial time SAT decision for complementation-invariant clause-sets, and sign-non-singular matrices. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 314–327. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Le Berre, D.: The SAT competitions (2009), http://www.satcompetition.org/

  7. Porschen, S., Schmidt, T.: On some SAT-variants over linear formulas. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 449–460. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Spence, I.: tts: A SAT-solver for small, difficult instances. Journal on Satisfiability, Boolean Modeling and Computation 4, 173–190 (2008)

    MATH  Google Scholar 

  9. Spence, I.: sgen1: A generator of small but difficult satisfiability benchmarks. Journal of Experimental Algorithms 15, 1.1–1.15 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Gelder, A., Spence, I. (2010). Zero-One Designs Produce Small Hard SAT Instances. In: Strichman, O., Szeider, S. (eds) Theory and Applications of Satisfiability Testing – SAT 2010. SAT 2010. Lecture Notes in Computer Science, vol 6175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14186-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14186-7_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14185-0

  • Online ISBN: 978-3-642-14186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics