Minimising Deterministic Büchi Automata Precisely Using SAT Solving

  • Rüdiger Ehlers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6175)

Abstract

We show how deterministic Büchi automata can be fully minimised by reduction to the satisfiability (SAT) problem, yielding the first automated method for this task. Size reduction of such ω-automata is an important step in probabilistic model checking as well as synthesis of finite-state systems. Our experiments demonstrate that state-of-the-art SAT solvers are capable of solving the resulting satisfiability problem instances quickly, making the approach presented valuable in practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories. In: [5], pp. 825–885.Google Scholar
  3. 3.
    Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)MATHGoogle Scholar
  4. 4.
    Biere, A.: Bounded Model Checking. In: [5], pp. 457–474Google Scholar
  5. 5.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)MATHGoogle Scholar
  6. 6.
    Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from PSL. Electr. Notes Theor. Comput. Sci. 190(4), 3–16 (2007)CrossRefGoogle Scholar
  7. 7.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–1175 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic w automata vis-a-vis deterministic buchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  12. 12.
    Kupferman, O., Morgenstern, G., Murano, A.: Typeness for omega-regular automata. Int. J. Found. Comput. Sci. 17(4), 869–884 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Löding, C.: Efficient minimization of deterministic weak omega-automata. Inf. Process. Lett. 79(3), 105–109 (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)Google Scholar
  16. 16.
    Sakallah, K.A.: Symmetry and Satisfiability. In: [5], pp. 289–338 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rüdiger Ehlers
    • 1
  1. 1.Reactive Systems GroupSaarland UniversityGermany

Personalised recommendations