Where Did Mally Go Wrong?

  • Gert-Jan C. Lokhorst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6181)


In 1926, Ernst Mally proposed the first system of deontic logic. His system turned out to be unacceptable. How can it be repaired? We discuss several proposals to reformulate it in terms of strict implication, relevant implication and strict relevant implication.


Modal Logic Modal System Deontic Logic Relevant Logic Classical Propositional Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A.R., Belnap Jr., N.D.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton (1975)MATHGoogle Scholar
  2. 2.
    Anderson, A.R., Belnap Jr., N.D., Dunn, J.M.: Entailment: The Logic of Relevance and Necessity, vol. 2. Princeton University Press, Princeton (1992)MATHGoogle Scholar
  3. 3.
    Bazhanov, V.A.: The scholar and the ‘Wolfhound Era’: The fate of Ivan E. Orlov’s ideas in logic, philosophy, and science. Science in Context 16, 535–550 (2003)CrossRefGoogle Scholar
  4. 4.
    Chellas, B.F., Segerberg, K.: Modal logics in the vicinity of S1. Notre Dame Journal of Formal Logic 37, 1–24 (1996)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Došen, K.: The first axiomatization of relevant logic. Journal of Philosophical Logic 21, 339–356 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Føllesdal, D., Hilpinen, R.: Deontic logic: An introduction. In: Hilpinen, R. (ed.) Deontic Logic: Introductory and Systematic Readings, 2nd edn., pp. 1–35. Reidel, Dordrecht (1981)Google Scholar
  7. 7.
    Goble, L.: The Andersonian reduction and relevant deontic logic. In: Brown, B., Woods, J. (eds.) New Studies in Exact Philosophy: Logic, Mathematics and Science. Proceedings of the 1999 Conference of the Society of Exact Philosophy, pp. 213–246. Hermes Science Publications, Paris (2001)Google Scholar
  8. 8.
    Lemmon, E.J.: New foundations for Lewis modal systems. The Journal of Symbolic Logic 22, 176–186 (1957)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lokhorst, G.J.C.: Anderson’s relevant deontic and eubouliatic systems. Notre Dame Journal of Formal Logic 49, 65–73 (2008)MATHMathSciNetGoogle Scholar
  10. 10.
    Lokhorst, G.J.C.: Andersonian deontic logic, propositional quantification, and Mally. Notre Dame Journal of Formal Logic 47, 385–395 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lokhorst, G.J.C.: Mally’s deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2002),
  12. 12.
    Lokhorst, G.J.C., Goble, L.: Mally’s deontic logic. Grazer philosophische Studien 67, 37–57 (2004)Google Scholar
  13. 13.
    McCune, W.: Prover9 version 2008-11A (November 2008),
  14. 14.
    Mally, E.: Grundgesetze des Sollens: Elemente der Logik des Willens. Leuschner und Lubensky, Graz (1926); Reprinted in Mally, E.: Logische Schriften: Großes Logikfragment, Grundgesetze des Sollens. In: Wolf, K., Weingartner, P. (eds.), pp. 227–324. Reidel, Dordrecht (1971) Google Scholar
  15. 15.
    Menger, K.: A logic of the doubtful: On optative and imperative logic. In: Reports of a Mathematical Colloquium. 2nd Series, vol. (2), pp. 53–64. Indiana University Press, Notre Dame (1939)Google Scholar
  16. 16.
    Morscher, E.: Mallys Axiomsystem für die deontische Logik: Rekonstruktion und kritische Würdigung. In: Hieke, A. (ed.) Ernst Mally: Versuch einer Neubewertung, pp. 81–165. Academia Verlag, Sankt Augustin (1998)Google Scholar
  17. 17.
    Orlov, I.E.: Ischislenie sovmestimosti predlozhenij. Matematicheskij sbornik 35, 263–286 (1928), MATHGoogle Scholar
  18. 18.
    Rabe, F., Pudlák, P., Sutcliffe, G., Shen, W.: Solving the $100 modal logic challenge. Journal of Applied Logic 7, 113–130 (2009)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Slaney, J.K.: MaGIC (Matrix Generator for Implication Connectives) version 2.2.1 (November 2008),
  20. 20.
    Zeman, J.J.: Modal Logic: The Lewis-Modal Systems. The Clarendon Press, Oxford (1973), MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gert-Jan C. Lokhorst
    • 1
  1. 1.Section of Philosophy, Faculty of Technology, Policy and ManagementDelft University of TechnologyDelftThe Netherlands

Personalised recommendations