Enhancing Web Caching Using Web Usage Mining Techniques

  • Samia Saidi
  • Yahya Slimani
Part of the Communications in Computer and Information Science book series (CCIS, volume 84)


Performance and other service quality attributes are crucial to user satisfaction of web services. Web Mining provides the key to un- derstanding web traffic behavior, which in turn explain the increasing interest in this domain and its high number of its possible applications. In this paper, we apply Web Usage Mining techniques to propose an intelligent caching solution with the goal of improving the quality of ser- vice of web sites. We found that empowering caching with a prefetching engine that predicates the components of pages to be used in the near future by users can enhance web sites performances. This is allowed by analyzing the historical of navigation of a web site reported in log files and by determining the set of components to be sollicitated in the future using frequent closed itemsets.


Web caching Web Usage Mining Web log files Web page com- ponents Frequent closed itemsets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Challenger, J., Dantzig, P., Iyengar, A., Witting, K.: A fragment-based approach for efficiently creating dynamic web content. ACM Trans. Internet Techn. 5(2), 359–389 (2005)CrossRefGoogle Scholar
  2. 2.
    Chang, C.-Y., Chen, M.-S.: A new cache replacement algorithm for the integration of web caching and prefectching. In: Proceedings of CIKM, Virginia, USA, pp. 632–634 (2002)Google Scholar
  3. 3.
    cooley, R.: Web usage mining: Discovery and application of interesting patterns from web data. PhD thesis, University of Minnesota, USA (2000)Google Scholar
  4. 4.
    Crovella, M., Barford, P.: The network effects for prefetching. In: Proc. IEEE INFOCOM 1998, pp. 1232–1240 (1998)Google Scholar
  5. 5.
    Datta, A., Dutta, K., Thomas, H., VanderMeer, D.: A comparative study of alternative middle tier caching solutions to support dynamic web content acceleration. In: Proceedings of the 27th VLDB Conference, Roma, Italy, pp. 11–14 (2001)Google Scholar
  6. 6.
    Gouda, K., Zaki, M.-J.: Genmax: An efficient algorithm for mining maximal frequent itemsets. Data Mining and Knowledge Discovery (2005)Google Scholar
  7. 7.
    Jacobson, V.: Congestion avoidance and control. In: Proceedings of ACM SIGCOMM, Stanford, CA, USA, pp. 314–329 (1988)Google Scholar
  8. 8.
    Labrinidis, A., Roussopoulos, N.: On the materialization of web views. In: Proc. of the ACM SIGMOD Conference, Philadelphia, Pennsylvania, USA, pp. 367–378 (1999)Google Scholar
  9. 9.
    Labrinidis, A., Roussopoulos, N.: Web views materialization. In: Proc. of the ACM SIGMOD Conference, Dallas, Texas, United States, pp. 79–84 (2000)Google Scholar
  10. 10.
    Labrinidis, A., Roussopoulos, N.: Online view selection for the web. In: Proc. of the ACM SIGMOD Conference, Madison, Wisconsin, pp. 56–68 (2002)Google Scholar
  11. 11.
    Labrinidis, A., Roussopoulos, N.: Exploring the trade-off between performance and data freshness in database-driven web servers. The VLDB Journal 13(3), 240–255 (2004)CrossRefGoogle Scholar
  12. 12.
    Nanopoulos, A., Katsaros, D., Manolopoulos, Y.: Exploiting web log mining for web cache enhancement. In: Kohavi, R., Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001. LNCS (LNAI), vol. 2356, pp. 68–87. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic detection of fragments in dynamically generated web pages. In: Proceedings of the 13th International Conference on World Wide Web WWW 2004, New York, USA, pp. 443–454 (2004)Google Scholar
  14. 14.
    tanasa, D.: Web Usage Mining: Contributions to Intersites Logs Preprocessing and Sequential Pattern Extraction with Low Support. PhD thesis, Thesis University of Nice Sophia Antipolis, French (2005)Google Scholar
  15. 15.
    Wu, Y.-H., Chen, A.-L.-P.: Prediction of web page accesses by proxy server log. World Wide Web 5(1), 67–88 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Zaiane, O.-R., Xin, M., Han, J.: Discovering web access patterns and trends by applying olap and data mining technologies on web logs. In: Proceedings, IEEE International Forum on Research and Technology Advances in Digital Libraries, pp. 19–29 (1998)Google Scholar
  17. 17.
    Zaki, M.-J., Hisiao, C.-J.: Charm: An efficient algorithm for closed itemset mining. In: 2nd SIAM Intl. Conf. on Data Mining, Arlington, VA, USA, pp. 457–473 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Samia Saidi
    • 1
  • Yahya Slimani
    • 1
  1. 1.Department of Computer Science, Faculty of Sciences of TunisUniversity of Sciences of Tunis 

Personalised recommendations