Skip to main content

Exponential Time Complexity of the Permanent and the Tutte Polynomial

(Extended Abstract)

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

The Exponential Time Hypothesis (ETH) says that deciding the satisfiability of n-variable 3-CNF formulas requires time \(\exp(\Omega(n))\). We relax this hypothesis by introducing its counting version #ETH, namely that every algorithm that counts the satisfying assignments requires time \(\exp(\Omega(n))\). We transfer the sparsification lemma for d-CNF formulas to the counting setting, which makes #ETH robust.

Under this hypothesis, we show lower bounds for well-studied #P-hard problems: Computing the permanent of an n×n matrix with m nonzero entries requires time \(\exp(\Omega(m))\). Restricted to 01-matrices, the bound is \(\exp(\Omega(m/\log m))\). Computing the Tutte polynomial of a multigraph with n vertices and m edges requires time \(\exp(\Omega(n))\) at points (x,y) with (x − 1)(y − 1) ≠ 1 and y ∉ {0,±1}. At points (x,0) with \(x \not \in \{0,\pm 1\}\) it requires time \(\exp(\Omega(n))\), and if x = − 2, − 3,..., it requires time \(\exp(\Omega(m))\). For simple graphs, the bound is \(\exp(\Omega(m/\log^3 m))\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M.: Determinant versus permanent. In: Proceedings of the 25th International Congress of Mathematicians, ICM, vol. 3, pp. 985–997 (2006)

    Google Scholar 

  2. Berkowitz, S.J.: On computing the determinant in small parallel time using a small number of processors. Information Processing Letters 18(3), 147–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect matchings. Algorithmica 52(2), 226–249 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: FOCS, pp. 677–686 (2008)

    Google Scholar 

  5. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Brylawski, T.: The Tutte polynomial, Matroid theory and its applications. In: Centro Internazionale Matematico Estivo, pp. 125–275 (1982)

    Google Scholar 

  7. Giménez, O., Hliněný, P., Noy, M.: Computing the Tutte polynomial on graphs of bounded clique-width. SIAM J. on Discrete Mathematics 20, 932–946 (2006)

    Article  MATH  Google Scholar 

  8. Goldberg, L.A., Jerrum, M.: The complexity of ferromagnetic Ising with local fields. Combinatorics, Probability and Computing 16(1), 43–61 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Information and Computation 206(7), 908–929 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Istrail, S.: Statistical mechanics, three-dimensionality and NP-completeness. I. universality of intractability for the partition function of the Ising model across non-planar lattices. In: STOC, pp. 87–96 (2000)

    Google Scholar 

  12. Jaeger, F., Vertigan, D.L., Welsh, D.J.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Cambridge 108(1), 35–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations over semirings. Journal of the ACM 29(3), 874–897 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Koivisto, M.: Partitioning into sets of bounded cardinality. In: IWPEC, pp. 258–263 (2009)

    Google Scholar 

  15. Kutzkov, K.: New upper bound for the #3-SAT problem. Information Processing Letters 105(1), 1–5 (2007)

    Article  MathSciNet  Google Scholar 

  16. Lawler, E.L.: A note on the complexity of the chromatic number problem. Information Processing Letters 5, 66–67 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  18. Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. Journal of the ACM 56(2), 1–17 (2009)

    Article  MathSciNet  Google Scholar 

  19. Ryser, H.J.: Combinatorial mathematics. Carus Math. Monographs, vol. 14. Mathematical Association of America (1963)

    Google Scholar 

  20. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  21. Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Combinatorics, Probability and Computing 13(02), 221–261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 327, pp. 173–226. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  23. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dell, H., Husfeldt, T., Wahlén, M. (2010). Exponential Time Complexity of the Permanent and the Tutte Polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics