Skip to main content

A Mathematical Model of the Competition between Acquired Immunity and Virus

  • Conference paper
  • 778 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6167))

Abstract

A mathematical model describing the interactions between viral infection and acquired immunity is proposed. The model is formulated in terms of a system of partial integro-differential bilinear equations. Results of numerical experiments are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, A.K., Lichtman, A.H.: Basic Immunology. In: Functions and Disorders of the Immune System. Elsevier, Philadelphia (2004)

    Google Scholar 

  2. Arlotti, L., Bellomo, N., De Angelis, E., Lachowicz, M.: Generalized Kinetic Models in Applied Sciences. World Sci., New Jersey (2003)

    MATH  Google Scholar 

  3. Bellomo, N.: Modelling Complex Living Systems. Birkhäuser, Boston (2007)

    Google Scholar 

  4. Bellomo, N., Bellouquid, A.: On the onset of nonlinearity for diffusion models of binary mixtures of biological materials by asymptotic analysis. Internat. J. Nonlinear Mech. 41(2), 281–293 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellomo, N., Bianca, C., Delitala, M.: Complexity analysis and mathematical tools towards the modelling of living systems. Physics of Life Reviews 6, 144–175 (2009)

    Article  Google Scholar 

  6. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews 5, 183–206 (2008)

    Article  Google Scholar 

  7. Bellomo, N., Forni, G.: Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling 20(1), 107–122 (1994)

    Article  MATH  Google Scholar 

  8. Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: Selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18, 593–646 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bellomo, N., Maini, P.: Preface in: Cancer Modelling (II). In: Math. Models Methods Appl. Sci. 16(7b) (special issue), iii–vii (2006)

    Google Scholar 

  10. Bellomo, N., Sleeman, B.: Preface in: Multiscale Cancer Modelling. Comput. Math. Meth. Med. 20(2-3) (special issue), 67–70 (2006)

    Article  MathSciNet  Google Scholar 

  11. De Angelis, E., Lodz, B.: On the kinetic theory for active particles: A model for tumor-immune system competition. Math. Comput. Modelling 47(1-2), 196–209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. De Lillo, S., Salvatori, M.C., Bellomo, N.: Mathematical tools of the kinetic theory of active particles with some reasoning on the modelling progression and heterogeneity. Math. Comput. Modelling 45(5-6), 564–578 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Forbus, K.D.: Qualitative Modeling. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Represantation, Foundations of Artificial Intelligence, vol. 3, pp. 361–393. Elsevier, Amsterdam (2008)

    Google Scholar 

  14. Gautschi, W.: Numerical Analysis: An Introduction. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  15. Kagi, D., Seiler, P., Pavlovic, J., Ledermann, B., Burki, K., Zinkernagel, R.M., Hengartner, H.: The roles of perforin-dependent and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur. J. Immunol. 25, 3256 (1995)

    Article  Google Scholar 

  16. Klienstein, S.H., Seiden, P.E.: Simulating the immune system. Computer Simulation, 69–77 (July-August 2000)

    Google Scholar 

  17. Kolev, M.: Mathematical modelling of the interactions between antibodies and virus. In: Proc. of the IEEE Conf. on Human System Interactions, Krakow, pp. 365–368 (2008)

    Google Scholar 

  18. Kolev, M.: Mathematical modelling of the humoral immune response to virus. In: Proc. of the Fourteenth National Conf. on Application of Mathematics in Biology and Medicine, Leszno, Poland, pp. 63–68 (2008)

    Google Scholar 

  19. Kolev, M.: Numerical modelling of cellular immune response to virus. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2008. LNCS, vol. 5434, pp. 361–368. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Kolev, M.: The immune system and its mathematical modelling. In: De Gaetano, A., Palumbo, P. (eds.) Mathematical Physiology Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publ., Oxford (2010), http://www.eolss.net

    Google Scholar 

  21. Kuby, J.: Immunology. W.H. Freeman, New York (1997)

    Google Scholar 

  22. Lollini, P.L., Motta, S., Pappalardo, P.: Modeling tumor immunology. Math. Models Methods Appl. Sci 16(7b), 1091–1125 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lydyard, P.M., Whelan, A., Fanger, M.W.: Instant Notes in Immunology. BIOS Sci. Publ. Ltd., Oxford (2000)

    Google Scholar 

  24. Marchuk, G.I.: Mathematical Modeling of Immune Response in Infectious Diseases. Kluwer Academic Publ., Dodrecht (1997)

    Google Scholar 

  25. Nowak, M.A., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford Univ. Press, Oxford (2000)

    MATH  Google Scholar 

  26. d’Onofrio, A.: Tumor–immune system interaction and immunotherapy: Modelling the tumor–stimulated proliferation of effectros. Math. Models Methods Appl. Sci. 16(8), 1375–1402 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Perelson, A.S., Weisbuch, G.: Immunology for physicists. Rev. Mod. Phys. 69(4), 1219–1267 (1997)

    Article  Google Scholar 

  28. Pinchuk, G.: Schaum’s Outline of Theory and Problems of Immunology. McGraw-Hill, New York (2002)

    Google Scholar 

  29. Shampine, M.W., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Volkov, E.A.: Numerical Methods. Hemisphere/Mir, New York/Moscow (1990)

    MATH  Google Scholar 

  31. Wodarz, D.: Killer Cell Dynamics. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  32. Wodarz, D., Bangham, C.R.: Evolutionary dynamics of HTLV-I. J. Mol. Evol. 50, 448–455 (2000)

    Google Scholar 

  33. Wodarz, D., Krakauer, D.C.: Defining CTL-induced pathology: implication for HIV. Virology 274, 94–104 (2000)

    Article  Google Scholar 

  34. Wodarz, D., May, R., Nowak, M.: The role of antigen-independent persistence of memory cytotoxic T lymphocytes. Intern. Immun. 12, 467–477 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolev, M.K. (2010). A Mathematical Model of the Competition between Acquired Immunity and Virus. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14128-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14127-0

  • Online ISBN: 978-3-642-14128-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics