Abstract
MKM has been defined as the quest for technologies to manage mathematical knowledge. MKM “in the small” is well-studied, so the real problem is to scale up to large, highly interconnected corpora: “MKM in the large”. We contend that advances in two areas are needed to reach this goal. We need representation languages that support incremental processing of all primitive MKM operations, and we need software architectures and implementations that implement these operations scalably on large knowledge bases.
We present instances of both in this paper: the Mmt framework for modular theory-graphs that integrates meta-logical foundations, which forms the base of the next OMDoc version; and TNTBase, a versioned storage system for XML-based document formats. TNTBase becomes an Mmt database by instantiating it with special MKM operations for Mmt.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Autexier, S., Hutter, D., Mantel, H., Schairer, A.: Towards an Evolutionary Formal Software-Development Using CASL. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 73–88. Springer, Heidelberg (2000)
Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): Generic Syntax, RFC 3986, Internet Engineering Task Force (2005)
Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)
Bourbaki, N.: Theory of Sets. In: Elements of Mathematics, Springer, Heidelberg (1968)
Bourbaki, N.: Algebra I. In: Elements of Mathematics, Springer, Heidelberg (1974)
Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report, The Open Math Society (2004), http://www.openmath.org/standard/om20
CoFI, The Common Framework Initiative. In: CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)
Curry, H., Feys, R.: Combinatory Logic. North-Holland, Amsterdam (1958)
Dumbrava, S., Horozal, F., Sojakova, K.: A Case Study on Formalizing Algebra in a Module System. In: Rabe, F., Schürmann, C. (eds.) Workshop on Modules and Libraries for Proof Assistants. ACM International Conference Proceeding Series, vol. 429, pp. 11–18 (2009)
Farmer, W.: An Infrastructure for Intertheory Reasoning. In: McAllester, D. (ed.) Conference on Automated Deduction, pp. 115–131. Springer, Heidelberg (2000)
Farmer, W., Guttman, J., Thayer, F.: Little Theories. In: Kapur, D. (ed.) Conference on Automated Deduction, pp. 467–581 (1992)
Farmer, W.M.: Mathematical Knowledge Management. In: Schwartz, D.G. (ed.) Mathematical Knowledge Management, pp. 599–604. Idea Group Reference (2005)
Giceva, J., Lange, C., Rabe, F.: Integrating Web Services into Active Mathematical Documents. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus 2009. LNCS, vol. 5625, pp. 279–293. Springer, Heidelberg (2009)
Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.: Introducing OBJ. In: Goguen, J., Coleman, D., Gallimore, R. (eds.) Applications of Algebraic Specification using OBJ, Cambridge (1993)
Horozal, F., Rabe, F.: Representing Model Theory in a Type-Theoretical Logical Framework. In: Fourth Workshop on Logical and Semantic Frameworks, with Applications. Electronic Notes in Theoretical Computer Science, vol. 256, pp. 49–65 (2009)
Horozal, F., Rabe, F.: Representing Model Theory in a Type-Theoretical Logical Framework. Under review (2010), http://kwarc.info/frabe/Research/EArabe_folsound_10.pdf
Howard, W.: The formulas-as-types notion of construction. In: To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pp. 479–490. Academic Press, London (1980)
Kohlhase, M., Mossakowski, T., Rabe, F.: The LATIN Project (2009), https://trac.omdoc.org/LATIN/
Kohlhase, M., Müller, C., Rabe, F.: Notations for Living Mathematical Documents. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 504–519. Springer, Heidelberg (2008)
Kohlhase, M., Rabe, F., Sacerdoti Coen, C.: A Foundational View on Integration Problems (2010) (Submitted to CALCULEMUS)
Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)
Naumov, P., Stehr, M., Meseguer, J.: The HOL/NuPRL proof translator - a practical approach to formal interoperability. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, p. 329. Springer, Heidelberg (2001)
Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002)
Odersky, M., Spoon, L., Venners, B.: Programming in Scala. artima (2007)
Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System. In: Kapur, D. (ed.) 11th International Conference on Automated Deduction (CADE), pp. 748–752. Springer, Heidelberg (1992)
Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)
Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)
Poswolsky, A., Schürmann, C.: System Description: Delphin - A Functional Programming Language for Deductive Systems. In: Abel, A., Urban, C. (eds.) International Workshop on Logical Frameworks and Metalanguages: Theory and Practice. ENTCS, pp. 135–141 (2008)
Rabe, F.: Representing Logics and Logic Translations. PhD thesis, Jacobs University Bremen (2008), http://kwarc.info/frabe/Research/phdthesis.pdf
Rabe, F.: The MMT System (2008), https://trac.kwarc.info/MMT/
Rabe, F., Schürmann, C.: A Practical Module System for LF. In: Cheney, J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press, New York (2009)
Sannella, D., Wirsing, M.: A Kernel Language for Algebraic Specification and Implementation. In: Karpinski, M. (ed.) Fundamentals of Computation Theory, pp. 413–427. Springer, Heidelberg (1983)
Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28 (1985)
Zholudev, V., Kohlhase, M.: TNTBase: a Versioned Storage for XML. In: Proceedings of Balisage: The Markup Conference 2009, vol. 3, Mulberry Technologies, Inc. (2009)
Zholudev, V., Kohlhase, M., Rabe, F.: A (insert XML Format) Database for (insert cool application). In: Proceedings of XMLPrague, XMPPrague.cz (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kohlhase, M., Rabe, F., Zholudev, V. (2010). Towards MKM in the Large: Modular Representation and Scalable Software Architecture. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-14128-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14127-0
Online ISBN: 978-3-642-14128-7
eBook Packages: Computer ScienceComputer Science (R0)