Formally Verified Conditions for Regularity of Interval Matrices

  • Ioana Paşca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)


We propose a formal study of interval analysis that concentrates on theoretical aspects rather than on computational ones. In particular we are interested in conditions for regularity of interval matrices. An interval matrix is called regular if all scalar matrices included in the interval matrix have non-null determinant and it is called singular otherwise. Regularity plays a central role in solving systems of linear interval equations. Several tests for regularity are available and widely used, but sometimes rely on rather involved results, hence the interest in formally verifying such conditions of regularity. In this paper we set the basis for this work: we define intervals, interval matrices and operations on them in the proof assistant Coq, and verify criteria for regularity and singularity of interval matrices.


interval analysis regularity of interval matrices formal verification Coq SSReflect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. In: Coq’Art:the Calculus of Inductive Constructions. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bertot, Y., Gonthier, G., Biha, S.O., Paşca, I.: Canonical Big Operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Biha, S.O.: Formalisation des mathématiques: une preuve du théorème de Cayley-Hamilton. In: Journées Francophones des Langages Applicatifs, pp. 1–14 (2008)Google Scholar
  4. 4.
    Boldo, S., Filliâtre, J.-C., Melquiond, G.: Combining Coq and Gappa for Certifying Floating-Point Programs. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus 2009, MKM 2009. LNCS (LNAI), vol. 5625, pp. 59–74. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Coq development team. The Coq Proof Assistant Reference Manual, version 8.2 (2009)Google Scholar
  6. 6.
    Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for interval arithmetic. IEEE Trans. Computers 58(2), 226–237 (2009)CrossRefGoogle Scholar
  7. 7.
    Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In: Montuschi, P., Schwarz, E. (eds.) Proceedings of the 17th IEEE Symposium on Computer Arithmetic, Cape Cod, MA, USA, pp. 188–195 (2005)Google Scholar
  8. 8.
    Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Urban, C. (ed.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gonthier, G., Mahboubi, A.: A small scale reflection extension for the coq system. INRIA Technical report,
  10. 10.
    Harrison, J.: A HOL theory of euclidean space. In: Hurd, J., Melham, T.F. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Hedberg, M.: A Coherence Theorem for Martin-Löf’s Type Theory. Journal of Functional Programming 8(4), 413–436 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Holzl, J.: Proving Inequalities over Reals with Computation in Isabelle/HOL. In: International Workshop on Programming Languages for Mechanized Mathematics Systems, pp. 38–45 (2009)Google Scholar
  13. 13.
    Julien, N., Paşca, I.: Formal Verification of Exact Computations Using Newton’s Method. In: Urban, C. (ed.) TPHOLs 2009. LNCS, vol. 5674, pp. 408–423. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Magaud, N.: Programming with Dependent Types in Coq: a Study of Square Matrices (January 2005) (Unpublished); A preliminary version appeared in Coq contributionsGoogle Scholar
  15. 15.
    Melquiond, G.: Proving bounds on real-valued functions with computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 2–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Merlet, J.-P.: Interval analysis for certified numerical solution of problems in robotics. International Journal of Applied Mathematics and Computer Science 19, 399–412 (2009)CrossRefGoogle Scholar
  17. 17.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  18. 18.
    Obua, S.: Proving bounds for real linear programs in isabelle/hol. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Pasca, I.: Formal Proofs for Theoretical Properties of Newton’s Method (2010), INRIA Research Report RR-7228,
  20. 20.
    Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval matrices. SIAM Journal on Matrix Analysis and Applications 20, 437–445 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: A survey. Electronic Journal of Linear Algebra 18, 500–512 (2009)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ioana Paşca
    • 1
  1. 1.INRIA Sophia Antipolis 

Personalised recommendations