The Challenges of Multivalued “Functions”

  • James H. Davenport
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)

Abstract

Although, formally, mathematics is clear that a function is a single-valued object, mathematical practice is looser, particularly with n-th roots and various inverse functions. In this paper, we point out some of the looseness, and ask what the implications are, both for Artificial Intelligence and Symbolic Computation, of these practices. In doing so, we look at the steps necessary to convert existing texts into

(a) rigorous statements

(b) rigorously proved statements.

In particular we ask whether there might be a constant “de Bruijn factor” [18] as we make these texts more formal, and conclude that the answer depends greatly on the interpretation being placed on the symbols.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. US Government Printing Office (1964)Google Scholar
  2. 2.
    Apostol, T.M.: Calculus, 1st edn., vol. I. Blaisdell (1961)Google Scholar
  3. 3.
    Beaumont, J.C., Bradford, R.J., Davenport, J.H., Phisanbut, N.: Adherence is Better Than Adjacency. In: Kauers, M. (ed.) Proceedings ISSAC 2005, pp. 37–44 (2005)Google Scholar
  4. 4.
    Beaumont, J.C., Bradford, R.J., Davenport, J.H., Phisanbut, N.: Testing Elementary Function Identities Using CAD. AAECC 18, 513–543 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bourbaki, N.: Théorie des Ensembles. In: Diffusion CCLS (1970)Google Scholar
  6. 6.
    Bradford, R.J., Corless, R.M., Davenport, J.H., Jeffrey, D.J., Watt, S.M.: Reasoning about the Elementary Functions of Complex Analysis. Annals of Mathematics and Artificial Intelligence 36, 303–318 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Carathéodory, C.: Theory of functions of a complex variable. Chelsea Publ., New York (1958)Google Scholar
  8. 8.
    Cartan, H.: Elementary Theory of Analytic Functions of One or Several Complex Variables. Addison-Wesley, Reading (1973)Google Scholar
  9. 9.
    Corless, R.M., Davenport, J.H., Jeffrey, D.J., Watt, S.M.: According to Abramowitz and Stegun. SIGSAM Bulletin 34(2), 58–65 (2000)CrossRefGoogle Scholar
  10. 10.
    Davenport, J.H.: Equality in computer algebra and beyond. J. Symbolic Comp. 34, 259–270 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Henrici, P.: Applied and Computational Complex Analysis I. Wiley, Chichester (1974)Google Scholar
  12. 12.
    Jeffreys, H., Jeffreys, B.: Methods of Mathematical Physics, 3rd edn. Cambridge University Press, Cambridge (1956)MATHGoogle Scholar
  13. 13.
    Kahan, W.: Branch Cuts for Complex Elementary Functions. In: Iserles, A., Powell, M.J.D. (eds.) The State of Art in Numerical Analysis, pp. 165–211 (1987)Google Scholar
  14. 14.
    Lazard, D., Rioboo, R.: Integration of Rational Functions - Rational Computation of the Logarithmic Part. J. Symbolic Comp. 9, 113–115 (1990)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mulders, T.: A note on subresultants and the Lazard/Rioboo/Trager formula in rational function integration. J. Symbolic Comp. 24, 45–50 (1997)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Risch, R.H.: Algebraic Properties of the Elementary Functions of Analysis. Amer. J. Math. 101, 743–759 (1979)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ritt, J.F.: Differential Algebra. In: American Mathematical Society Colloquium Proceedings, vol. XXXIII (1950)Google Scholar
  18. 18.
    Wiedijk, F.: The De Bruijn Factor (2000), http://www.cs.kun.nl/~freek/notes/factor.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • James H. Davenport
    • 1
  1. 1.Department of Computer ScienceUniversity of BathBathUnited Kingdom

Personalised recommendations