Skip to main content

Introduction

  • Chapter
  • First Online:
  • 978 Accesses

Part of the book series: Springer Theses ((Springer Theses))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Use time wisely for it runs so fast. But order teaches you to save time.

References

  1. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421

    Article  ADS  Google Scholar 

  2. Bär M, Engel H, Schöll E, Torcini A (eds) (2004) Trends in pattern formation: stability, control and fluctuations, special issue of Physica D, vol 199 (no. 1, 2). Elsevier, Amsterdam, pp 1–277

    Google Scholar 

  3. Schöll E, Hizanidis J, Hövel P, Stegemann G (2007) Pattern formation in semiconductors under the influence of time-delayed feedback control and noise. In: Schimansky-Geier L, Fiedler B, Kurths J, Schöll E (eds) Analysis and control of complex nonlinear processes in physics, chemistry and biology. World Scientific, Singapore, pp 135–183

    Google Scholar 

  4. Schöll E, Schuster HG (eds) (2008) Handbook of chaos control. Wiley-VCH, Weinheim (second completely revised and enlarged edition)

    Google Scholar 

  5. Schimansky-Geier L, Fiedler B, Kurths J, Schöll E (eds) (2007) Analysis and control of complex nonlinear processes in physics, chemistry and biology. World Scientific, Singapore

    Google Scholar 

  6. Schöll E, Hövel P, Flunkert V, Dahlem MA (2010) Time-delayed feedback control: from simple models to lasers and neural systems. In: Atay FM (eds) Complex time-delay systems: theory and applications. Springer, Berlin

    Google Scholar 

  7. Nijmeijer H, Schaft AVD (1996) Nonlinear dynamical control systems, 3rd edn. Springer, New York

    Google Scholar 

  8. Ogata K (1997) Modern control engineering. Prentice-Hall, New York

    Google Scholar 

  9. Fradkov AL, Miroshnik IV, Nikiforov VO (1999) Nonlinear and adaptive control of complex systems. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  10. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Gauthier DJ (2003) Resource letter: controlling chaos. Am J Phys 71:750

    Article  ADS  Google Scholar 

  12. Pyragas K (2006) Delayed feedback control of chaos. Philos Trans R Soc A 364:2309

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Sieber J, Krauskopf B (2007) Control based bifurcation analysis for experiments. Nonlinear Dyn 51:365

    Article  MathSciNet  Google Scholar 

  14. Franceschini G, Bose S, Schöll E (1999) Control of chaotic spatiotemporal spiking by time-delay autosynchronisation. Phys Rev E 60:5426

    Article  ADS  Google Scholar 

  15. Kim M, Bertram M, Pollmann M, von Oertzen A, Mikhailov AS, Rotermund HH, Ertl G (2001) Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science 292:1357

    Article  ADS  Google Scholar 

  16. Beck O, Amann A, Schöll E, Socolar JES, Just W (2002) Comparison of time-delayed feedback schemes for spatio-temporal control of chaos in a reaction-diffusion system with global coupling. Phys Rev E 66:016213

    Article  ADS  Google Scholar 

  17. Baba N, Amann A, Schöll E, Just W (2002) Giant improvement of time-delayed feedback control by spatio-temporal filtering. Phys Rev Lett 89:074101

    Article  ADS  Google Scholar 

  18. Unkelbach J, Amann A, Just W, Schöll E (2003) Time-delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes. Phys Rev E 68:026204

    Article  ADS  Google Scholar 

  19. Schlesner J, Amann A, Janson NB, Just W, Schöll E (2003) Self-stabilization of high frequency oscillations in semiconductor superlattices by time-delay autosynchronization. Phys Rev E 68:066208

    Article  ADS  Google Scholar 

  20. Beta C, Bertram M, Mikhailov AS, Rotermund HH, Ertl G (2003) Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. Phys Rev E 67:046224

    Article  ADS  Google Scholar 

  21. Beta C, Mikhailov AS (2004) Controlling spatiotemporal chaos in oscillatory reaction–diffusion systems by time-delay autosynchronization. Phys D 199:173

    Article  MATH  MathSciNet  Google Scholar 

  22. Montgomery KA, Silber M (2004) Feedback control of travelling wave solutions of the complex Ginzburg–Landau equation. Nonlinearity 17:2225

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Postlethwaite CM, Silber M (2007) Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control. Phys Rev E 76:056214

    Article  ADS  MathSciNet  Google Scholar 

  24. Ahlborn A, Parlitz U (2007) Controlling spatiotemporal chaos using multiple delays. Phys Rev E 75:65202

    Article  ADS  Google Scholar 

  25. Ahlborn A, Parlitz U (2008) Control and synchronization of spatiotemporal chaos. Phys Rev E 77:016201

    Article  ADS  Google Scholar 

  26. Dahlem MA, Schneider FM, Schöll E (2008) Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke. Chaos 18:026110

    Article  ADS  MathSciNet  Google Scholar 

  27. Kyrychko YN, Blyuss KB, Hogan SJ, Schöll E (2009) Control of spatio-temporal patterns in the Gray–Scott model. Chaos 19:043126

    Article  ADS  Google Scholar 

  28. Majer N, Schöll E (2009) Resonant control of stochastic spatio-temporal dynamics in a tunnel diode by multiple time delayed feedback. Phys Rev E 79:011109

    Article  ADS  Google Scholar 

  29. Kehrt M, Hövel P, Flunkert V, Dahlem MA, Rodin P, Schöll E (2009) Stabilization of complex spatio-temporal dynamics near a subcritical Hopf bifurcation by time-delayed feedback. Eur Phys J B 68:557

    Article  ADS  MATH  Google Scholar 

  30. Gauthier DJ, Sukow DW, Concannon HM, Socolar JES (1994) Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. Phys Rev E 50:2343

    Article  ADS  Google Scholar 

  31. Socolar JES, Sukow DW, Gauthier DJ (1994) Stabilizing unstable periodic orbits in fast dynamical systems. Phys Rev E 50:3245

    Article  ADS  Google Scholar 

  32. Sukow DW, Bleich ME, Gauthier DJ, Socolar JES (1997) Controlling chaos in a fast diode resonator using time-delay autosynchronisation: experimental observations and theoretical analysis. Chaos 7:560

    Article  ADS  Google Scholar 

  33. Wieczorek S, Krauskopf B, Lenstra D (1999) Unifying view of bifurcations in a semiconductor laser subject to optical injection. Opt Commun 172:279

    Article  ADS  Google Scholar 

  34. Krauskopf B, Lenstra D (eds) (2000) Fundamental issues of nonlinear laser dynamics. AIP Conference Proceedings 548. American Institute of Physics, Melville

    Google Scholar 

  35. Blakely JN, Illing L, Gauthier DJ (2004) Controling fast chaos in delay dynamical systems. Phys Rev Lett 92:193901

    Article  ADS  Google Scholar 

  36. Wieczorek S, Krauskopf B, Simpson T, Lenstra D (2005) The dynamical complexity of optically injected semiconductor lasers. Phys Rep 416:1

    Article  ADS  Google Scholar 

  37. Erzgräber H, Krauskopf B, Lenstra D, Fischer APA, Vemuri G (2006) Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback. Phys Rev E 73:055201(R)

    Google Scholar 

  38. Illing L, Gauthier DJ (2006) Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback. Chaos 16:033119

    Article  ADS  Google Scholar 

  39. Schikora S, Hövel P, Wünsche HJ, Schöll E, Henneberger F (2006) All-optical noninvasive control of unstable steady states in a semiconductor laser. Phys Rev Lett 97:213902

    Article  ADS  Google Scholar 

  40. Green K, Krauskopf B (2006) Mode structure of a semiconductor laser subject to filtered optical feedback. Opt Commun 258:243

    Article  ADS  Google Scholar 

  41. Erzgräber H, Krauskopf B, Lenstra D (2007) Bifurcation analysis of a semiconductor laser with filtered optical feedback. SIAM J Appl Dyn Syst 6:1

    Article  MATH  MathSciNet  Google Scholar 

  42. Erzgräber H, Lenstra D, Krauskopf B, Fischer APA, Vemuri G (2007) Feedback phase sensitivity of a semiconductor laser subject to filtered optical feedback: experiment and theory. Phys Rev E 76:026212

    Article  ADS  Google Scholar 

  43. Erzgräber H, Krauskopf B (2007) Dynamics of a filtered-feedback laser: influence of the filter width. Opt Lett 32:2441

    Article  ADS  Google Scholar 

  44. Dahms T, Hövel P, Schöll E (2007) Control of unstable steady states by extended time-delayed feedback. Phys Rev E 76:056201

    Article  ADS  MathSciNet  Google Scholar 

  45. Wünsche HJ, Schikora S, Henneberger F (2008) Noninvasive control of semiconductor lasers by delayed optical feedback. In: Schöll E, Schuster HG (eds) Handbook of chaos control. Wiley-VCH, Weinheim (second completely revised and enlarged edition)

    Google Scholar 

  46. Flunkert V, Schöll E (2007) Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys Rev E 76:066202

    Article  ADS  Google Scholar 

  47. Fiedler B, Yanchuk S, Flunkert V, Hövel P, Wünsche HJ, Schöll E (2008) Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser. Phys Rev E 77:066207

    Article  ADS  MathSciNet  Google Scholar 

  48. Flunkert V, D’Huys O, Danckaert J, Fischer I, Schöll E (2009) Bubbling in delay-coupled lasers. Phys Rev E 79:065201 (R)

    Google Scholar 

  49. Balanov AG, Janson NB, Schöll E (2005) Delayed feedback control of chaos: bifurcation analysis. Phys Rev E 71:016222

    Article  ADS  Google Scholar 

  50. Hizanidis J, Aust R, Schöll E (2008) Delay-induced multistability near a global bifurcation. Int J Bifur Chaos 18:1759

    Article  MATH  Google Scholar 

  51. Reznik D, Schöll E (1993) Oscillation modes, transient chaos and its control in a modulation-doped semiconductor double-heterostructure. Z Phys B 91:309

    Article  ADS  Google Scholar 

  52. Schöll E, Pyragas K (1993) Tunable semiconductor oscillator based on self-control of chaos in the dynamic Hall effect. Europhys Lett 24:159

    Article  ADS  Google Scholar 

  53. Schöll E, Pyragas K, Cooper D, Döttling R (1994) Tuning of semiconductor oscillators by chaos control. Semicond Sci Technol 9:559

    Article  ADS  Google Scholar 

  54. Schöll E (2004) Pattern formation in semiconductors: control of spatio-temporal dynamics. Ann Phys (Leipzig) 13:403. Special topic issue edited by Friedrich R, Kuhn T, Linz S

    Google Scholar 

  55. Schöll E (2008) Delayed feedback control of chaotic spatio-temporal patterns in semiconductor nanostructures. In: Schöll E, Schuster HG (eds) Handbook of chaos control, Chap 24. Wiley-VCH, Weinheim, pp 533–558 (second completely revised and enlarged edition)

    Google Scholar 

  56. Stegemann G, Balanov AG, Schöll E (2005) Noise-induced pattern formation in a semiconductor nanostructure. Phys Rev E 71:016221

    Article  ADS  Google Scholar 

  57. Stegemann G, Balanov AG, Schöll E (2006) Delayed feedback control of stochastic spatiotemporal dynamics in a resonant tunneling diode. Phys Rev E 73:016203

    Article  ADS  Google Scholar 

  58. Stegemann G, Schöll E (2007) Two-dimensional spatiotemporal pattern formation in the double-barrier resonant tunneling diode. New J Phys 9:55

    Article  Google Scholar 

  59. Schöll E, Majer N, Stegemann G (2008) Extended time delayed feedback control of stochastic dynamics in a resonant tunneling diode. Phys Stat Sol C 5:194

    Article  Google Scholar 

  60. Hizanidis J, Balanov AG, Amann A, Schöll E (2006) Noise-induced oscillations and their control in semiconductor superlattices. Int J Bifur Chaos 16:1701

    Article  MATH  Google Scholar 

  61. Hizanidis J, Balanov AG, Amann A, Schöll E (2006) Noise-induced front motion: signature of a global bifurcation. Phys Rev Lett 96:244104

    Article  ADS  Google Scholar 

  62. Janson NB, Balanov AG, Schöll E (2004) Delayed feedback as a means of control of noise-induced motion. Phys Rev Lett 93:010601

    Article  ADS  Google Scholar 

  63. Balanov AG, Janson NB, Schöll E (2004) Control of noise-induced oscillations by delayed feedback. Phys D 199:1

    Article  MATH  Google Scholar 

  64. Pomplun J, Amann A, Schöll E (2005) Mean field approximation of time-delayed feedback control of noise-induced oscillations in the Van der Pol system. Europhys Lett 71:366

    Article  ADS  MathSciNet  Google Scholar 

  65. Janson NB, Balanov AG, Schöll E (2008) Control of noise-induced dynamics. In: Schöll E, Schuster HG (eds) Handbook of chaos control, Chap. 11. Wiley-VCH, Weinheim, pp 223–274 (second completely revised and enlarged edition)

    Google Scholar 

  66. Hu G, Ditzinger T, Ning CZ, Haken H (1993) Stochastic resonance without external periodic force. Phys Rev Lett 71:807

    Article  ADS  Google Scholar 

  67. Pikovsky AS, Kurths J (1997) Coherence resonance in a noise-driven excitable system. Phys Rev Lett 78:775

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. García-Ojalvo J, Sancho JM (1999) Noise in spatially extended systems. Springer, New York

    Book  MATH  Google Scholar 

  69. Masoller C (2002) Noise-induced resonance in delayed feedback systems. Phys Rev Lett 88:034102

    Article  ADS  Google Scholar 

  70. Lindner B, García-Ojalvo J, Neiman A, Schimansky-Geier L (2004) Effects of noise in excitable systems. Phys Rep 392:321

    Article  ADS  Google Scholar 

  71. Sagués F, Sancho JM, García-Ojalvo J (2007) Spatiotemporal order out of noise. Rev Mod Phys 79:829

    Article  ADS  Google Scholar 

  72. Just W, Bose M, Bose S, Engel H, Schöll E (2001) Spatio-temporal dynamics near a supercritical Turing–Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys Rev E 64:026219

    Article  ADS  Google Scholar 

  73. Schlesner J, Zykov V, Engel H, Schöll E (2006) Stabilization of unstable rigid rotation of spiral waves in excitable media. Phys Rev E 74:046215

    Article  ADS  Google Scholar 

  74. Balanov AG, Beato V, Janson NB, Engel H, Schöll E (2006) Delayed feedback control of noise-induced patterns in excitable media. Phys Rev E 74:016214

    Article  ADS  Google Scholar 

  75. Dahlem MA, Schneider FM, Schöll E (2008) Efficient control of transient wave forms to prevent spreading depolarizations. J. Theor Biol 251:202

    Article  Google Scholar 

  76. Stepan G (2009) Delay effects in brain dynamics. Philos Trans R Soc A 367:1059

    Article  ADS  MATH  MathSciNet  Google Scholar 

  77. Stepan G (2009) Delay effects in the human sensory system during balancing. Philos Trans R Soc A 367:1195

    Article  ADS  MATH  MathSciNet  Google Scholar 

  78. Jirsa VK (2009) Neural field dynamics with local and global connectivity and time delay. Philos Trans R Soc A 367:1131

    Article  ADS  MATH  MathSciNet  Google Scholar 

  79. Schiff SJ, Jerger K, Duong DH, Chang T, Spano ML, Ditto WL (1994) Controlling chaos in the brain. Nature (London) 370:615

    Article  ADS  Google Scholar 

  80. Tass PA, Rosenblum MG, Weule J, Kurths J, Pikovsky AS, Volkmann J, Schnitzler A, Freund HJ (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291

    Article  ADS  Google Scholar 

  81. Grosse P, Cassidy MJ, Freund HJ (2002) EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol 113:1523

    Article  Google Scholar 

  82. Rosenblum MG, Pikovsky AS (2004) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70:041904

    Article  ADS  MathSciNet  Google Scholar 

  83. Barnikol UB, Popovych OV, Hauptmann C, Sturm V, Freund HJ, Tass PA (2008) Tremor entrainment by patterned low-frequency stimulation. Philos Trans R Soc A 366:3545

    Article  ADS  Google Scholar 

  84. Rosenblum MG, Pikovsky AS, Kurths J (2001) Synchronization—a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  85. Balanov AG, Janson NB, Postnov DE, Sosnovtseva OV (2009) Synchronization: from simple to complex. Springer, Berlin

    Google Scholar 

  86. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167

    Article  ADS  MATH  MathSciNet  Google Scholar 

  87. Coombes S, Laing C (2009) Delays in activity-based neural networks. Philos Trans R Soc A 367:1117

    Article  ADS  MATH  MathSciNet  Google Scholar 

  88. Ermentrout GB, Ko TW (2009) Delays and weakly coupled neuronal oscillators. Philos Trans R Soc A 367:1097

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Hövel .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hövel, P. (2010). Introduction. In: Control of Complex Nonlinear Systems with Delay. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14110-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14110-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14109-6

  • Online ISBN: 978-3-642-14110-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics