Advertisement

Clothes Matching for Blind and Color Blind People

  • Yingli Tian
  • Shuai Yuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6180)

Abstract

Matching clothes is a challenging task for blind people. In this paper, we propose a new computer vision-based technology of clothes matching to help blind or color blind people by using a pair of images from two different clothes captured by a camera. A mini-laptop or a PDA can be used to perform the texture and color matching process. The proposed method can handle clothes in uniform color without any texture, as well as clothes with multiple colors and complex textures patterns. Furthermore, our method is robust to variations of illumination, clothes rotation, and clothes wrinkles. The proposed method is evaluated on a challenging database of clothes. The matching results are displayed as audio outputs (sound or speech) to the users for “match (for both color and texture)”, “color match, texture not match”, “texture match, color not match”, or “not match (for both color and texture)”.

Keywords

Computer Vision Clothes Matching Color Matching Texture Matching Blind Color Blind 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G., et al.: Global data on visual impairment in the year 2002. Bulletin of the World Health Organization 82, 844–851 (2004)Google Scholar
  2. 2.
    Color identifier manufactured by BRYTECH, http://www.brytech.com/
  3. 3.
    Akhloufi, M.A., Ben Larbi, W., Maldague, X.: Framework for color-texture classification in machine vision inspection of industrial products. IEEE International Conference on System, Man, and Cybernetic (2007)Google Scholar
  4. 4.
    Caelli, T., Reye, D.: On the classification of image regions by color, texture and shape. Pattern Recognition (1996)Google Scholar
  5. 5.
    Charalampidis, D., Kasparis, T.: Wavelet-Based Rotational Invariant Roughness Features for Texture Classification and Segmentation. IEEE Trans. on Image Processing 11(8) (2002)Google Scholar
  6. 6.
    Dennis, D., Higgins, W.E., Wakeley, J.: Texture segmentation using 2D Gabor elementary functions. IEEE Trans. On Pattern Analysis and Machine Intelligence 16(2) (1994)Google Scholar
  7. 7.
    Do, M.N., Vetterli, M.: Texture similarity measurement using Kullback-Leibler distance on wavelet subbands. In: Proc. IEEE Int. Conf. on Image Proc., ICIP (2000)Google Scholar
  8. 8.
    Do, M.N., Vetterli, M.: Rotation invariant characterization and retrieval using steerable wavelet-domain Hidden Markov Models. IEEE Trans. Multimedia 4(4) (2002)Google Scholar
  9. 9.
    Van Gool, L.J., Dewaele, P., Oosterlinck, A.: Texture analysis. Compute Vision, Graphics, and Image Processing 29 (3) (1985)Google Scholar
  10. 10.
    Haley, G.M., Manjunath, B.S.: Rotation-invariant texture classification using a complete space-frequency model. IEEE Trans. Image Process. 8(2) (1999)Google Scholar
  11. 11.
    Hanbury, A., Kandaswamy, U., Adjeroh, D.A.: Illumination-invariant Morphological Texture Classification. In: International Symposium on Mathematical Morphology (2005)Google Scholar
  12. 12.
    Jalil, A., Manzar, A., Cheema, T.A., Qureshi, I.M.: New Rotation- Invariant Texture Analysis Technique Using Radon Transform and Hidden Markov Models. IEEE, Trans. INF&SYST. E91-D(12) (2008)Google Scholar
  13. 13.
    Khouzani, K.J., Zaden, H.S.: Radon Transform Orientation Estimation for Rotation Invariant Texture Analysis. IEEE. Trans. on pattern analysis and machine intelligence 27(6) (June 2005)Google Scholar
  14. 14.
    Varma, M., Ziisserman, A.: Texture Classification: Are Filter Banks Necessary. In: IEEE Conference on Computer Vision and Pattern Recognition (2003)Google Scholar
  15. 15.
    Wu, W.R., Wei, S.-C.: Rotation and gray-scale transform invariant texture classification using spiral resembling, subband decomposition, and Hidden Markov Models. IEEE Trans. Image Process 5(10) (1996)Google Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yingli Tian
    • 1
  • Shuai Yuan
    • 1
  1. 1.Electrical Engineering DepartmentThe City College of New YorkNew York

Personalised recommendations