Automatic Checking of Alternative Texts on Web Pages

  • Morten Goodwin Olsen
  • Mikael Snaprud
  • Annika Nietzio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6179)


For people who cannot see non-textual web content, such as images, maps or audio files, the alternative texts are crucial to understand and use the content. Alternate texts are often automatically generated by web publishing software or not properly provided by the author of the content. Such texts may impose web accessibility barriers. Automatic accessibility checkers in use today can only detect the presence of alternative texts, but not determine if the text is describing the corresponding content in any useful way. This paper presents a pattern recognition approach for automatic detection of alternative texts that may impose a barrier, reaching an accuracy of more then 90%.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Web Accessibility Benchmarking Cluster: Unified Web Evaluation Methodology (UWEM 1.2) (2007), (Retrieved November 4, 2009)
  2. 2.
    Nietzio, A., Ulltveit-Moe, N., Gjøsæter, T., Olsen, M.G., Snaprud, M.: Unified Web Evaluation Methodology Indicator Refinement (2007), (Retrieved November 4, 2009)
  3. 3.
    World Wide Web Consortium: Web Content Accessibility Guidelines 1.0. W3C Recommendation (May 5, 1999), (Retrieved November 4, 2009)
  4. 4.
    World Wide Web Consortium: Web Content Accessibility Guidelines (WCAG) 2.0 (2008) (Retrieved November 4, 2009)
  5. 5.
    Slatin, J.: The art of ALT: toward a more accessible Web. Computers and Composition 18(1), 73–81 (2001)CrossRefGoogle Scholar
  6. 6.
    Web Compliance Center of the Fraunhofer Institute for Applied Information Technology (FIT): Web compliance manager demo. (2009), (Retrieved November 4, 2010)
  7. 7.
    Bigham, J.: Increasing web accessibility by automatically judging alternative text quality. In: Proceedings of the 12th international conference on Intelligent user interfaces, p. 352. ACM, New York (2007)Google Scholar
  8. 8.
    Hershkop, S.: Behavior-based email analysis with application to spam detection. PhD thesis, Citeseer (2006)Google Scholar
  9. 9.
    Fetterly, D., Manasse, M., Najork, M.: Spam, damn spam, and statistics: Using statistical analysis to locate spam web pages. In: Proceedings of the 7th International Workshop on the Web and Databases: colocated with ACM SIGMOD/PODS 2004, pp. 1–6. ACM, New York (2004)Google Scholar
  10. 10.
    Yu, B., Xu, Z.: A comparative study for content-based dynamic spam classification using four machine learning algorithms. Knowledge-Based Systems 21(4), 355–362 (2008)CrossRefGoogle Scholar
  11. 11.
    Kolesnikov, O., Lee, W., Lipton, R.: Filtering spam using search engines. Technical report. Technical Report. GITCC-04-15, Georgia Tech., College of Computing, Georgia Institute of Technology, Atlanta, GA 30332 (2004-2005)Google Scholar
  12. 12.
    Chen, Z., Wu, O., Zhu, M., Hu, W.: A novel web page filtering system by combining texts and images. In: WI 2006: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, Washington, DC, USA, pp. 732–735. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  13. 13.
    Duda, R., Hart, P., Stork, D.: Pattern classification. Citeseer (2001)Google Scholar
  14. 14.
    Solorio, T., Pérez-Coutino, M., et al.: A language independent method for question classification. In: Proceedings of the 20th international conference on Computational Linguistics, p. 1374. Association for Computational Linguistics (2004)Google Scholar
  15. 15.
    Craven, T.: Some features of alt text associated with images in web pages. Information Research 11 (2006)Google Scholar
  16. 16.
    Gutierrez, C., Loucopoulos, C., Reinsch, R.: Disability-accessibility of airlines Web sites for US reservations online. Journal of Air Transport Management 11(4), 239–247 (2005)CrossRefGoogle Scholar
  17. 17.
    Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  18. 18.
    Wikipedia: Cross-validation (statistics) — wikipedia, the free encyclopedia (2010) (online accessed January 28, 2010)Google Scholar
  19. 19.
    Duchrow, T., Shtatland, T., Guettler, D., Pivovarov, M., Kramer, S., Weissleder, R.: Enhancing navigation in biomedical databases by community voting and database-driven text classification. BMC bioinformatics 10(1), 317 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Morten Goodwin Olsen
    • 1
  • Mikael Snaprud
    • 1
  • Annika Nietzio
    • 2
  1. 1.Tingtun ASLillesandNorway
  2. 2.Forschungsinstitut Technologie und Behinderung (FTB), der Evangelischen Stiftung VolmarsteinWetter (Ruhr)Germany

Personalised recommendations