Advertisement

Towards to Real–Time System with Optimization Based Approach for EOG and Blinking Signals Separation for Human Computer Interaction

  • Robert Krupiński
  • Przemysław Mazurek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6179)

Abstract

Electrooculography (EOG) systems could be used for Human Computer Interaction but measurements with minimal number of electrodes and appropriate signals processing algorithms for the separation of EOG and blinking signals are required. Median filter with a carefully selected mask size could be used for the initialization of the evolution–based algorithm, which is used for the estimation and separation of EOG and blinking signals.

Keywords

Biomeasurements Biosignals Electrooculography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bankman, I.N., Thakor, N.V.: Noise reduction in biological step signals: application to saccadic EOG. Med. Biol. Eng. Comput. 28(6), 544–549 (1990) (PMID: 2287177)Google Scholar
  2. 2.
    Barea, R., Boquete, L., Mazo, M., López, E.: Wheelchair Guidance Strategies Using EOG. Journal of Intelligent and Robotic Systems 34, 279–299 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    E.O.G Beowulf DVD 2’nd disc. Warner Brothers (2008)Google Scholar
  4. 4.
    Bulling, A., Roggen, D., Tröster, G.: Wearable EOG goggles: Seamless sensing and context–awareness in everyday environments. Journal of Ambient Intelligence and Smart Environments (JAISE) 1(2), 157–171 (2009), doi:10.3233/AIS–2009–0020Google Scholar
  5. 5.
    Duchowski, A.: Eye Tracking Methodology: Theory and Practice. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  6. 6.
    Gu, E., Lee, S.P., Badler, J.B., Badler, N.I.: Eye Movements, Saccades, and Multiparty Conversations. In: Deng, Z., Neumann, U. (eds.) Data–Driven 3D Facial Animation, pp. 79–97. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Juhola, M.: Median filtering is appropriate to signals of saccadic eye movements. Computers in Biology and Medicine 21, 43–49 (1991)CrossRefGoogle Scholar
  8. 8.
    Hori, J., Sakano, K., Miyakawa, M., Saitoh, Y.: Eye Movement Communication Control System Based on EOG and Voluntary Eye Blink. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 950–953. Springer, Heidelberg (2006) doi:10.1007/11788713–138CrossRefGoogle Scholar
  9. 9.
    Khan, J.I., Komogortsev, O.: Perceptual video compression with combined scene analysis and eye–gaze tracking. In: Duchowski, A.T., Vertegaal, R. (eds.) ETRA 2004 – Proceedings of the Eye Tracking Research and Application Symposium, San Antonio, Texas, USA, March 22–24, p. 57 (2004)Google Scholar
  10. 10.
    Krupiński, R., Mazurek, P.: Estimation of Eye Blinking using Biopotentials Measurements for Computer Animation Applications. In: Bolc, L., Kulikowski, J.L., Wociechowski, K. (eds.) ICCVG 2008. LNCS, vol. 5337, pp. 302–310. Springer, Heidelberg (2008), doi:10.1007/978–3–642–02345–3–30Google Scholar
  11. 11.
    Krupiński, R., Mazurek, P.: Median Filters Optimization for Electrooculography and Blinking Signal Separation using Synthetic Model. In: 14th IEEE/IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2009, Miedzyzdroje (2009)Google Scholar
  12. 12.
    Krupiński, R., Mazurek, P.: Optimization–based Technique for Separation and Detection of Saccadic Movements and Eye–blinking in Electrooculography Biosignals. In: Software Tools and Algorithms for Biological Systems, Advances in Experimental Medicine and Biology. Springer, Heidelberg (in print, 2010)Google Scholar
  13. 13.
    Krupiński, R., Mazurek, P.: Convergence Improving in Optimization-Based Estimation of Electrooculography and Blinking Signals. In: 2nd International Conference Information Technologies in Biomedicine ITiB 2010 (in print, 2010)Google Scholar
  14. 14.
    Martinez, M., Soria, E., Magdalena, R., Serrano, A.J., Martin, J.D., Vila, J.: Comparative study of several Fir Median Hybrid Filters for blink noise removal in Electrooculograms. WSEAS Transactions on Signal Processing 4, 53–59 (2008)Google Scholar
  15. 15.
    Sony Pictures Entertainment, Sony Corporation, Sagar, M., Remington, S.: System and method for tracking facial muscle and eye motion for computer graphics animation, Patent US., International Publication Number WO/2006/039497 A2 (13.04. 2006)Google Scholar
  16. 16.
    Poole, A., Ball, L.J.: Eye Tracking in Human–Computer Interaction and Usability Research: Current Status and Future Prospects. In: Ghaoui, C. (ed.) Encyclopedia of Human Computer Interaction, pp. 211–219. Idea Group, USA (2005)Google Scholar
  17. 17.
    Usakli, A.B., Gurkan, S., Aloise, F., Vecchiato, G., Babiloni, F.: On the Use of Electrooculogram for Efficient Human Computer Interfaces. Computational Intelligence and Neuroscience 2010, 5 pages (2010), doi:10.1155/2010/135629Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Robert Krupiński
    • 1
  • Przemysław Mazurek
    • 1
  1. 1.Department of Signal Processing and Multimedia EngineeringWest–Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations