Skip to main content

Reaction Kinetics

  • Chapter
  • First Online:
Combustion Engines Development
  • 6932 Accesses

Abstract

A chemical reaction between reactants Aa, Ab, etc., which form the products Ac, Ad, etc. can be described in the following form

$$ {\nu_a} {A_a} + {\nu_b}{A_b}{ + } \ldots \to {\nu_c}{A_c} + {\nu_d}{A_d}{ + } \ldots. $$
(5.1)

The ν i thereby designate the so-called stoichiometric coefficients of the reaction. Since every chemical reaction can in principle run both forwards as well as backwards, the reaction arrow in (5.1) can be replaced with an equal sign. We thereby obtain the general form of the reaction equation

$$ \sum\limits_i {{\nu_i}{A_i} = 0,} $$
(5.2)

whereby the stoichiometric coefficients are conventionally negative for all educts and positive for all products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoni C (1998) Untersuchung des Verbrennungsvorgangs im direkteinspritzenden Dieselmotor mit zyklusaufgelöster Emissionsspektroskopie. Dissertation, RWTH Aachen

    Google Scholar 

  • Chaos M, Kazakov A, Zhao Z, Dryer FL (2007) A high-temperature chemical kinetic model for primary reference fuels. Int J Chem Kinet 39:399–414

    Article  Google Scholar 

  • Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modeling study of n-heptane oxidation. Combust Flame 114:149–177

    Article  Google Scholar 

  • Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modeling study of iso-octane oxidation. Combust Flame 129:253–280

    Article  Google Scholar 

  • Farrell JT, Cernansky NP, Dryer FL, Friend DG, Hergart CA, Law CK, McDavid R, Mueller CJ, Pitsch H (2007) Development of an experimental database and kinetic models for surrogate diesel fuels. SAE Paper 2007-01-0201

    Google Scholar 

  • Glassmann I (1996) Combustion. Academic, San Diego

    Google Scholar 

  • Halstead M, Kirsch L, Quinn C (1977) The autoignition of hydrocarbon fuels at high temperatures and pressures – fitting of a mathematical model. Combust Flame 30:45–60

    Article  Google Scholar 

  • Kong S-C, Han Z, Reitz RD (1995) The developement and application of a diesel ignition and combustion model for multidimensional engine simulations. SAE Paper 950278

    Google Scholar 

  • Leppard WR (1990) The chemical origin of fuel octane sensitivity. SAE paper 902137

    Google Scholar 

  • Lu T, Law CK (2006) Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane. Combust Flame 144:24–36

    Article  Google Scholar 

  • Lu T, Law CK (2009) Toward accommodating realistic fuel chemistry in large-scale computations. Progr Energ Combust Sci 35:192–215

    Article  Google Scholar 

  • Maas U, Pope SB (1992) Simplifying chemical-kinetics – intrinsic low-dimensional manifolds in composition space. Combust Flame 88:239–264

    Article  Google Scholar 

  • Meeks E, Ando H, Chou C-P, Dean AM, Hodgson D, Koshi M, Lengyel I, Maas U, Naik CV, Puduppakkam KV, Reitz RD, Wang C, Westbrook CK (1988) New modeling approaches using detailed kinetics for advanced engines. 7. International conf. on modeling and diagnostics for advanced engine systems (COMODIA), Sapporo

    Google Scholar 

  • Moran MJ, Shapiro HN (1992) Fundamentals of engineering thermodynamics, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Pitz WJ, Cernansky NP, Dryer FL, Egolfopoulos FN, Farrell JT, Friend DG, Pitsch H (2007) Development of an experimental database and kinetic models for surrogate gasoline fuels. SAE Paper 2007-01-0175

    Google Scholar 

  • Reynolds WC (1986) The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Stanford University

    Google Scholar 

  • Semenov N (1935) Chemical kinetics and chain reactions. Oxford University Press, London

    Google Scholar 

  • Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner WC Jr, Lissianski VV, Qin Z (1999) http://www.me.berkeley.edu/gri_mech/

  • Tomlin AS, Turanyi T, Pilling MJ (1997) Mathematical tools for the construction, investigation and reduction of combustion mechanisms. In: Pilling MJ, Hancock G (eds) Low-temperature Combustion and Autoignition, vol 35, Comprehensive Chemical Kinetics., p 293

    Chapter  Google Scholar 

  • Warnatz J, Maas U, Dibble RW (2001) Verbrennung: Physikalisch-Chemische Grundlagen. Modellierung und Simulation, Experimente, Schadstoffentstehung. 3. Aufl., Springer, Berlin

    Google Scholar 

  • Westbrook CK, Dryer FL (1981) Simplified Reaction Mechanism for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Sci. Tech., Vol. 27, 31–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Stiesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stiesch, G., Eckert, P. (2012). Reaction Kinetics. In: Merker, G., Schwarz, C., Teichmann, R. (eds) Combustion Engines Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14094-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14094-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02951-6

  • Online ISBN: 978-3-642-14094-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics