Abstract
We developed a compact tactile sensor in order to guide the clinician or the self-user for non-invasive detection of lumps. The new design has an advantage over the existing discrete tactile sensors and detection methods by efficiently sensing force distribution over an area without any side effects. The sensor consists of 10×10 infrared emitter-detector pairs, a silicon-rubber elastic pad, and a contoured tactile interface (25x21 moving pins) for palpating three-dimensional objects. To demonstrate the practical use of the sensor, first a cylindrical tissue-like silicon phantom was prepared, then a 13 mm diameter rigid spherical object was placed at varying depths of 0-20 mm to simulate cancerous lumps in breast tissue, and finally the tactile sensor was systematically pressed on the phantom to successfully detect the lumps for compression depths of 10-24 mm. The location and the estimated radius of each lump were calculated from the recorded tactile images.
Keywords
- Optical array sensor
- lump detection
- breast cancer
- tactile mapping
- artificial palpation
- haptics
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Organization, W. H. World Health Statistics 2009. World Health Organization, Geneva (2009)
Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M., Boyle, P.: Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 18(3), 581–592 (2007)
Sarvazyan, A., Egorov, V.: Cost-Effective Screening for Breast Cancer Worldwide: Current State and Future Directions. Breast Cancer: Basic and Clinical Research, 91–99 (2008)
Lang, P.: Optical Tactile Sensor for Medical Palpation. In: The Thirty-Fourth London District Science and Technology Conference, pp. 1–5 (March 2004)
Wang, Y., Nguyen, C., Srikanchana, R., Geng, Z., Freedman, M.T.: Tactile Mapping of Palpable Abnormalities for Breast Cancer Diagnosis. In: Proc. of the Int. Conf. on Robotics and Automation, pp. 1305–1309 (May 1999)
Zeng, J., Wang, Y., Freedman, M.T., Mun, S.K.: Finger Tracking for Breast Palpation Quantification using Color Image Features. SPIE J. of Opt. Eng. 36(12), 3455–3461 (1997)
Haagensen, C.D.: Diseases of the Breast, 3rd edn. Saunders, Philadelphia (1986)
Kitagawa, M., Okamura, A.M., Bertha, B.T., Gott, V.L., Baumgartner, W.A.: Analysis of Suture Manipulation Forces for Teleoperation with Force Feedback. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 155–162. Springer, Heidelberg (2002)
Ohtsuka, T., Furuse, A., Kohno, T., Nakajima, J., Yagyu, K., Omata, S.: New Tactile Sensor Techniques for Localization of Pulmonary Nodules. International Surgery 82, 12–14 (1997)
Wellman, P.S., Dalton, E.P., Krag, D., Kern, K.A., Howe, R.D.: Tactile Imaging of Breast Masses: First Clinical Report. Archives of Surgery 136, 204–208 (2001)
Carmichael, A., Sami, A., Dixon, J.: Breast cancer risk among the survivors of atomic bomb and patients exposed to therapeutic ionising radiation. European Journal of Surgical Oncology 29(5), 475–479
Shellock, F.G.: Biomedical Implants and Devices: Assessment of Magnetic Field Interactions with a 3.0-Tesla MR System. Journal Of Magnetic Resonance Imaging (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ayyildiz, M., Guclu, B., Yildiz, M.Z., Basdogan, C. (2010). A Novel Tactile Sensor for Detecting Lumps in Breast Tissue. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds) Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol 6191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14064-8_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-14064-8_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14063-1
Online ISBN: 978-3-642-14064-8
eBook Packages: Computer ScienceComputer Science (R0)