Haptics Can “Lend a Hand” to a Bionic Eye

  • Barry Richardson
  • George Van Doorn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6191)

Abstract

Here we argue that haptics (touch and kinaesthesis) can play a key role in the development of a bionic eye. Tactile displays can supplement and complement the incomplete information that a visual prosthetic will offer the brain in early stages of the prosthetic’s development. Kinaesthetic inputs give the brain feedback about motor activities that correlate with both visual and tactile inputs, and are critical for perceptual competency. Haptic inputs can also help “teach” the new visual sense to respond to stimuli that are initially indiscriminable and enable cross-calibration of inputs to strengthen multimodal cortical connections. By using haptics to supplement and complement inputs from a visual prosthetic, a bionic eye can develop more quickly than did the Bionic Ear.

Keywords

Haptics bionic eye sensory integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pezaris, J.S., Eskandar, E.N.: Getting Signals into the Brain: Visual Prosthetics Through Thalamic Microstimulation. Neurosurg. Focus. 27(1), 1–11 (2009)CrossRefGoogle Scholar
  2. 2.
    Suaning, G.J., Lovell, N.H., Schindhelm, K., Coroneo, M.T.: The Bionic Eye (Electronic Visual Prosthesis): A Review. Aust. NZ. J. Ophthalmol. 26, 195–202 (1998)CrossRefGoogle Scholar
  3. 3.
    Cohen, N.L., Waltzman, S.B., Shapiro, W.H.: Telephone Speech Comprehension with use of the Nucleus Cochlear Implant. Ann. Otol. Rhinol. Laryngol. Suppl. 142, 8–11 (1989)Google Scholar
  4. 4.
    Grant, K.W., Seitz, P.F.: The use of Visible Speech Cues for Improving Auditory Detection of Spoken Sentences. J. Acoust. Soc. Am. 108(3), 1197–1208 (2000)CrossRefGoogle Scholar
  5. 5.
    Dowling, J.A.: Artificial Human Vision. Expert Review of Medical Devices 2(1), 73–85 (2005)CrossRefGoogle Scholar
  6. 6.
    Brindley, G.S., Lewin, W.S.: The Sensations Produced by Electrical Stimulation of the Visual Cortex. J. Physiol. 196, 479–493 (1968)Google Scholar
  7. 7.
    Richardson, B.L., Frost, B.J.: Sensory Substitution and the Design of an Artificial Ear. J. Psych. 96, 259–285 (1977)CrossRefGoogle Scholar
  8. 8.
    Leeper, R.: A Study of a Neglected Portion of the Field of Learning - The Development of Sensory Organization. J. Genet. Psychol. 46, 41–75 (1935)Google Scholar
  9. 9.
    Quinlan, P.T., Wilton, R.N.: Grouping by Proximity or Similarity? Competition Between the Gestalt principles in Vision. Perception 27(4), 417–430 (1998)CrossRefGoogle Scholar
  10. 10.
    Jervis, C.: Gestalt Principles in Tactile Pattern Perception (Unpublished master’s thesis). Monash University, Churchill (2004)Google Scholar
  11. 11.
    Held, R., Hein, A.: Movement-produced Stimulation in the Development of Visually Guided Behaviour. J. Comp. Physiol. Psych. 56(5), 872–876 (1963)CrossRefGoogle Scholar
  12. 12.
    Gori, M., Del Viva, M., Sandini, G., Burr, D.C.: Young Children do not Integrate Visual and Haptic form Information. Curr. Biol. 18(9), 694–698 (2008)CrossRefGoogle Scholar
  13. 13.
    Cohen, L.G., Celnik, P., Pascual-Leone, A., Corwell, B., Faiz, L., Dambrosia, J., Honda, M., Sadato, N., Gerloff, C., Catala, M.D., Hallett, M.: Functional Relevance of Cross-modal Plasticity in Blind Humans. Nature 389, 180–183 (1997)CrossRefGoogle Scholar
  14. 14.
    Gizewski, E.R., Gasser, T., de Greiff, A., Boehm, A., Forsting, M.: Cross-modal Plasticity for Sensory and Motor Activation Patterns in Blind Subjects. NeuroImage 19(3), 968–975 (2003)CrossRefGoogle Scholar
  15. 15.
    Perier, O., Boorsma, A.: A Prosthetic Device Utilizing Vibro-tactile Perception of Profoundly Deaf Children. Brit. J. Audiol. 16, 277–280 (1982)CrossRefGoogle Scholar
  16. 16.
    Richardson, B.L.: Tactile Hearing Aids Enhance Cortical Connections. Brit. J. Audiol. 20, 173–174 (1986)CrossRefGoogle Scholar
  17. 17.
    Macaluso, E., Frith, C.D., Driver, J.: Modulation of Human Visual Cortex by Crossmodal Spatial Attention. Science 289, 1206–1208 (2000)CrossRefGoogle Scholar
  18. 18.
    Burgess, N., Jeffery, K.J., O’Keefe, J.: Integrating Hippocampal and Parietal Functions. In: Burgess, N., Jeffery, K.J., O’Keefe, J. (eds.) The Hippocampal and Parietal Foundations of Spatial Cognition, pp. 4–29. Oxford University Press, Oxford (1999)Google Scholar
  19. 19.
    Graziano, M.S., Gross, C.G.: The Representation of Extrapersonal Space: A Possible Role for Bimodal, Visual-tactile Neurons. In: Gazzaniga, M.S. (ed.) The Cognitive Neurosciences, pp. 1021–1042. MIT Press, Cambridge (1995)Google Scholar
  20. 20.
    Millar, S.: Network Models for Haptic Perception. Infant Behav. Dev. 28(3), 250–265 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Bach-y-Rita, P., Collins, C.C., Saunders, F.A., White, B., Scadden, L.: Vision Substitution by Tactile Image Projection. Nature 221, 963–964 (1969)CrossRefGoogle Scholar
  22. 22.
    Guarniero, G.: Experience of Tactile Vision. Perception 3, 101–104 (1974)CrossRefGoogle Scholar
  23. 23.
    Klatzky, R.L., Lederman, S., Reed, C.: Haptic Integration of Object Properties: Texture, Hardness, and Planar Contour. J. Exp. Psychol. Human 15, 45–57 (1989)CrossRefGoogle Scholar
  24. 24.
    Brooks, P.L., Frost, B.J., Mason, J.L., Gibson, D.M.: Continuing Evaluation of the Queen’s University Tactile Vocoder 1: Identification of Open Set Words. J. Rehabil. Res. Dev. 23, 119–128 (1986)Google Scholar
  25. 25.
    Summers, I.R., Chanter, C.M.: A Broadband Tactile Array on the Fingertip. J. Acoust. Soc. Am. 112(5), 2118–2126 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Barry Richardson
    • 1
  • George Van Doorn
    • 1
  1. 1.Bionics and Cognitive Science Centre, School of Humanities, Communications and Social SciencesMonash UniversityChurchillAustralia

Personalised recommendations