Online Intention Recognition in Computer-Assisted Teleoperation Systems

  • Nikolay Stefanov
  • Angelika Peer
  • Martin Buss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6191)


Limitations of state-of-the-art teleoperation systems can be compensated by using shared-control teleoperation architectures that provide haptic assistance to the human operator. This paper presents a new approach for computer-assisted teleoperation, which recognizes human intentions and dependent on the classified task activates different types of assistances. For this purpose, time series haptic data is recorded during interaction, passed through an event-based feature extraction, and finally used for task classification by applying a Hidden Markov Model approach. The effect of the assistance function on human behavior is discussed and taken into account by training multiple classifiers for each type of assistance. The introduced approach is finally validated in a real hardware experiment. Results show an accurate intention recognition for assisted and non-assisted teleoperation.


teleoperation human intention recognition shared control computer assistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corteville, B., Aertbelien, E., Bruyninckx, H., Schutter, J.D., Brussel, H.V.: Human-inspired robot assistant for fast point-to-point movements. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3639–3644. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  2. 2.
    Unterhinninghofen, U., Freyberger, F.K., Buss, M.: Study on computer assistance for telepresent reaching movements. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 745–754. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Lee, D., Kulic, D., Nakamura, Y.: Missing motion data recovery using factorial hidden markov models. In: IEEE International Conference on Robotics and Automation, ICRA 2008, May 2008, pp. 1722–1728 (2008)Google Scholar
  4. 4.
    Aarno, D., Kragic, D.: Motion intention recognition in robot assisted applications. Robot. Auton. Syst. 56(8), 692–705 (2008)CrossRefGoogle Scholar
  5. 5.
    Zollner, R., Rogalla, O., Dillmann, R., Zollner, M.: Understanding users intention: programming fine manipulation tasks by demonstration. In: IEEE/RSJ International Conference on Intelligent Robots and System, vol. 2, pp. 1114–1119 (2002)Google Scholar
  6. 6.
    Castellani, A., Botturi, D., Bicego, M., Fiorini, P.: Hybrid hmm/svm model for the analysis and segmentation of teleoperation tasks. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2004, April-1 May, vol. 3, pp. 2918–2923 (2004)Google Scholar
  7. 7.
    Aarno, D., Kragic, D.: Layered HMM for motion intention recognition. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5130–5135 (October 2006)Google Scholar
  8. 8.
    Stefanov, N., Peer, A., Buss, M.: Online intention recognition for computer-assisted teleoperation. In: IEEE International Conference on Robotics and Automation (to appear, 2010)Google Scholar
  9. 9.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience Publication, Hoboken (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nikolay Stefanov
    • 1
  • Angelika Peer
    • 1
  • Martin Buss
    • 1
  1. 1.Institute of Automatic Control EngineeringTechnische Universität MünchenMünchenGermany

Personalised recommendations