A Turing-Like Handshake Test for Motor Intelligence

  • Amir Karniel
  • Ilana Nisky
  • Guy Avraham
  • Bat-Chen Peles
  • Shelly Levy-Tzedek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6191)


In the Turing test, a computer model is deemed to “think intelligently” if it can generate answers that are not distinguishable from those of a human. This test is limited to the linguistic aspects of machine intelligence. A salient function of the brain is the control of movement, with the human hand movement being a sophisticated demonstration of this function. Therefore, we propose a Turing-like handshake test, for machine motor intelligence. We administer the test through a telerobotic system in which the interrogator is engaged in a task of holding a robotic stylus and interacting with another party (human, artificial, or a linear combination of the two). Instead of asking the interrogator whether the other party is a person or a computer program, we employ a forced-choice method and ask which of two systems is more human-like. By comparing a given model with a weighted sum of human and artificial systems, we fit a psychometric curve to the answers of the interrogator and extract a quantitative measure for the computer model in terms of similarity to the human handshake.


Turing test Human Machine Interface Haptics Teleoperation Motor Control Motor Behavior Diagnostics Perception Rhythmic Discrete 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turing, A.M.: Computing Machinery and Intelligence. Mind. A Quarterly Review of Psychology and Philosophy LIX (1950)Google Scholar
  2. 2.
    Loeb, G.E., Otten, B.: T-shirt logo human machine handshake Computational Neuroscience: Motor Control. Cold Spring Harbor, NY (1986)Google Scholar
  3. 3.
    Shadmehr, R., Wise, S.P.: The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. MIT Press, Cambridge (2005)Google Scholar
  4. 4.
    Chaplin, W.F., Phillips, J.B., Brown, J.D., Clanton, N.R., Stein, J.L.: Handshaking, gender, personality, and first impressions. Journal of Personality and Social Psychology 79, 110–117 (2000)CrossRefGoogle Scholar
  5. 5.
    Stewart, G.L., Dustin, S.L., Barrick, M.R., Darnold, T.C.: Exploring the handshake in employment interviews. Journal of Applied Psychology 93, 1139–1146 (2008)CrossRefGoogle Scholar
  6. 6.
    Jindai, M., Watanabe, T., Shibata, S., Yamamoto, T.: Development of Handshake Robot System for Embodied Interaction with Humans. In: The 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK (2006)Google Scholar
  7. 7.
    Kasuga, T., Hashimoto, M.: Human-Robot Handshaking using Neural Oscillators. In: Internatioanl Conference on Robotics and Automation. IEEE, Barcelona (2005)Google Scholar
  8. 8.
    Ouchi, K., Hashimoto, S.: Handshake Telephone System to Communicate with Voice and Force. In: IEEE International Workshop on Robot and Human Communication, pp. 466–471 (1997)Google Scholar
  9. 9.
    Bailenson, J.N., Yee, N.: Virtual interpersonal touch and digital chameleons. Journal of Nonverbal Behavior 31, 225–242 (2007)CrossRefGoogle Scholar
  10. 10.
    Miyashita, T., Ishiguro, H.: Human-like natural behavior generation based on involuntary motions for humanoid robots. Robotics and Autonomous Systems 48, 203–212 (2004)CrossRefGoogle Scholar
  11. 11.
    Hogan, N., Sternad, D.: On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp. Brain Res. 181, 13–30 (2007)CrossRefGoogle Scholar
  12. 12.
    Guiard, Y.: On Fitts’s and Hooke’s laws: simple harmonic movement in upper-limb cyclical aiming. Acta psychologica 82, 139–159 (1993)CrossRefGoogle Scholar
  13. 13.
    Buchanan, J., Park, J., Shea, C.: Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Experimental Brain Research 175, 710–725 (2006)CrossRefGoogle Scholar
  14. 14.
    Levy-Tzedek, S., Ben Tov, M., Karniel, A.: Early switching between movement types: indication of predictive control? (submitted)Google Scholar
  15. 15.
    Levy-Tzedek, S., Krebs, H., Song, D., Hogan, N., Poizner, H.: Non-monotonicity on a spatio-temporally defined cyclic task: evidence of two movement types? Experimental Brain Research 202(4), 733–746 (2010)CrossRefGoogle Scholar
  16. 16.
    Wichmann, F.A., Hill, N.J.: The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001)CrossRefGoogle Scholar
  17. 17.
    Goodale, M.A., Milner, A.D.: Seperate visoual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992)CrossRefGoogle Scholar
  18. 18.
    Pressman, A., Nisky, I., Karniel, A., Mussa-Ivaldi, F.A.: Probing Virtual Boundaries and the Perception of Delayed Stiffness. Advanced Robotics 22, 119–140 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Amir Karniel
    • 1
  • Ilana Nisky
    • 1
  • Guy Avraham
    • 1
  • Bat-Chen Peles
    • 1
  • Shelly Levy-Tzedek
    • 1
  1. 1.The Computational Motor control Laboratory, Department of Biomedical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations