Improving the Prediction of Haptic Impression User Ratings Using Perception-Based Weighting Methods: Experimental Evaluation

  • Christian Hatzfeld
  • Thorsten A. Kern
  • Roland Werthschützky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6191)


The prediction of haptic impressions of objects is an interesting topic for system designers. Valid prediction schemes would help to evaluate systems in an early stage of development. This paper investigates the approach of weighting mechanical measurements with three perception-inspired weighting procedures to obtain more accurate predictions of user ratings. Experiments are conducted using a set of five light switches as common examples for passive haptic control elements. The results imply that user ratings are mainly based on tactile information in the range of 10 to 1000 Hz, which is not covered completely by current industrial measurement procedures.


FIP haptic impression user rating system design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MacLean, K.: The Haptic Camera: A Technique for Characterizing and Playing back Haptic Properties of real Environments. In: IMECE (1996)Google Scholar
  2. 2.
    Colton, M.B., Hollerbach, J.M.: Reality-Based Haptic Force Models of Buttons and Switches. In: IEEE Int. Conf. on Robotics and Automation (2007)Google Scholar
  3. 3.
    Reisinger, J., Wild, J., Mauter, G., Bubb, H.: Haptical feeling of rotary switches. In: Proc. of the Eurohaptics Conf. (2006)Google Scholar
  4. 4.
    Anguelov, N.: Haptische und akustische Kenngrößen zur Objektivierung und Optimierung der Wertanmutung von Schaltern und Bedienfeldern für den KFZ-Innenraum. PhD thesis, TU Dresden, Fakultät Maschinenwesen (2009)Google Scholar
  5. 5.
    Rösler, F., Schüttler, F., Battenberg, G.: Subjective perceptions and objective characterisrtics of control elements. ATZ- Autotechnology (2009)Google Scholar
  6. 6.
    Zwicker, E., Fastl, H.: Psychoacoustics. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Kuchenbecker, K.J., Fiene, J., Niemeyer, G.: Improving Contact Realism Through Event-Based Haptic Feedback. IEEE Trans. on Visualization and Computer Graphics (2006)Google Scholar
  8. 8.
    Kern, T.A., Schaeffer, A., Werthschützky, R.: An Interaction Model for the Quantification of Haptic Impressions. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 139–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Hatzfeld, C., Kern, T.A., Werthschützky, R.: Design and Evaluation of a Measuring System for Human Force Perception Parameters. Sensors And Actuators A: Physical (2010) (in press) doi:10.1016/j.sna.2010.01.026Google Scholar
  10. 10.
    Cholewiak, S., Kim, K., Tan, H., Adelstein, B.: A Frequency-Domain Analysis of Haptic Gratings. IEEE Trans. on Haptics (2009) (to be published)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian Hatzfeld
    • 1
  • Thorsten A. Kern
    • 1
  • Roland Werthschützky
    • 1
  1. 1.Institute for Electromechanical DesignTechnische Universität DarmstadtDarmstadt

Personalised recommendations