Skip to main content

Abstract

It is well known that among all probabilistic graphical Markov models the class of decomposable models is the most advantageous in the sense that the respective distributions can be expressed with the help of their marginals and that the most efficient computational procedures are designed for their processing (for example professional software does not perform computations with Bayesian networks but with decomposable models into which the original Bayesian network is transformed). This paper introduces a definition of the counterpart of these models within Dempster-Shafer theory of evidence, makes a survey of their most important properties and illustrates their efficiency on the problem of approximation of a “sample distribution” for a data file with missing values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben Yaghlane, B., Smets, P., Mellouli, K.: Belief Function Independence: I. The Marginal Case. Int. J. of Approximate Reasoning 29(1), 47–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben Yaghlane, B., Smets, P., Mellouli, K.: Belief Function Independence: II. The Conditional Case. Int. J. of Approximate Reasoning 31(1-2), 31–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Couso, I., Moral, S., Walley, P.: Examples of independence for imprecise probabilities. In: de Cooman, G., Cozman, F.G., Moral, S., Walley, P. (eds.) Proceedings of ISIPTA 1999, pp. 121–130 (1999)

    Google Scholar 

  4. Dempster, A.: Upper and lower probabilities induced by a multi-valued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hutter, M., Zaffalon, M.: Bayesian treatment of incomplete discrete data applied to mutual information and feature selection. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 396–406. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Jiroušek, R.: On a conditional irrelevance relation for belief functions based on the operator of composition. In: Beierle, C., Kern-Isberner, G. (eds.) Dynamics of Knowledge and Belief, Proceedings of the Workshop at the 30th Annual German Conference on Artificial Intelligence, Fern Universität in Hagen, Osnabrück, pp. 28–41 (2007)

    Google Scholar 

  7. Jiroušek, R.: Factorization and Decomposable Models in Dempster-Shafer Theory of Evidence. In: Workshop on the Theory of Belief Functions, Brest, France (2010)

    Google Scholar 

  8. Jiroušek, R., Vejnarová, J.: Compositional models and conditional independence in evidence theory. Accepted to Int. J. Approx. Reasoning, doi: 10.1016/j.ijar.2010.02.005

    Google Scholar 

  9. Jiroušek, R., Vejnarová, J., Daniel, M.: Compositional models of belief functions. In: de Cooman, G., Vejnarová, J., Zaffalon, M. (eds.) Proc. of the 5th Symposium on Imprecise Probabilities and Their Applications, Praha, pp. 243–252 (2007)

    Google Scholar 

  10. Jousselme, A.L., Maupin, P.: On some properties of distances in evidence theory. In: Workshop on the Theory of Belief Functions, Brest, France (2010)

    Google Scholar 

  11. Klir, G.J.: Uncertainty and Information. Foundations of Generalized Information Theory. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  12. Lauritzen, S.L.: Graphical models. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  14. Shenoy, P.P.: Conditional independence in valuation-based systems. Int. J. of Approximate Reasoning 10(3), 203–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shenoy, P.P.: Binary join trees for computing marginals in the Shenoy-Shafer architecture. Int. J. of Approximate Reasoning 17(2-3), 239–263 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Studený, M.: Formal properties of conditional independence in different calculi of AI. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 341–351. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  17. Studený, M.: On stochastic conditional independence: the problems of characterization and description. Annals of Mathematics and Artificial Intelligence 35, 323–341 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiroušek, R. (2010). Approximation of Data by Decomposable Belief Models. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. IPMU 2010. Communications in Computer and Information Science, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14055-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14055-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14054-9

  • Online ISBN: 978-3-642-14055-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics