A Certified Denotational Abstract Interpreter

  • David Cachera
  • David Pichardie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6172)


Abstract Interpretation proposes advanced techniques for static analysis of programs that raise specific challenges for machine-checked soundness proofs. Most classical dataflow analysis techniques iterate operators on lattices without infinite ascending chains. In contrast, abstract interpreters are looking for fixpoints in infinite lattices where widening and narrowing are used for accelerating the convergence. Smart iteration strategies are crucial when using such accelerating operators because they directly impact the precision of the analysis diagnostic. In this paper, we show how we manage to program and prove correct in Coq an abstract interpreter that uses iteration strategies based on program syntax. A key component of the formalization is the introduction of an intermediate semantics based on a generic least-fixpoint operator on complete lattices and allows us to decompose the soundness proof in an elegant manner.


Operational Semantic Iteration Strategy Abstract Interpretation Proof Obligation Proof Assistant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational semantics in Coq. In: Urban, C. (ed.) TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Bertot, Y.: Structural abstract interpretation, a formal study in Coq. In: Bove, A., Barbosa, L.S., Pardo, A., Pinto, J.S. (eds.) ALFA. LNCS, vol. 5520, pp. 153–194. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language. J. Autom. Reasoning 43(3), 263–288 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cousot, P.: Visiting Professor at the MIT Aeronautics and Astronautics Department, Course 16.399: Abstract InterpretationGoogle Scholar
  5. 5.
    Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M., Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS Press, Amsterdam (1999)Google Scholar
  6. 6.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. of POPL’77, pp. 238–252. ACM Press, New York (1977)Google Scholar
  7. 7.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTRÉE analyser. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Gordon, M.J.C.: Mechanizing programming logics in higher-order logic. In: Current Trends in Hardware Verfication and Automatic Theorem Proving, pp. 387–439. Springer, Heidelberg (1988)Google Scholar
  9. 9.
    Leroy, X.: Mechanized semantics, with applications to program proof and compiler verification, lecture given at the, Marktoberdorf summer school (2009)Google Scholar
  10. 10.
    Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: Proc. of POPL’06, pp. 42–54. ACM Press, New York (2006)Google Scholar
  11. 11.
    Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook. Formal Aspects of Computing 10, 171–186 (1998)zbMATHCrossRefGoogle Scholar
  13. 13.
    Pichardie, D.: Interprétation abstraite en logique intuitionniste : extraction d’analyseurs Java certifiés. PhD thesis, Université Rennes 1 (2005) (in french)Google Scholar
  14. 14.
    Pichardie, D.: Building certified static analysers by modular construction of well-founded lattices. In: Proc. of FICS’08. ENTCS, vol. 212, pp. 225–239 (2008)Google Scholar
  15. 15.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. Program. Lang. Syst. 29(5) (2007)Google Scholar
  17. 17.
    Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Cachera
    • 1
  • David Pichardie
    • 2
  1. 1.IRISA / ENS Cachan (Bretagne)France
  2. 2.INRIA Rennes – Bretagne AtlantiqueFrance

Personalised recommendations