Skip to main content

A Mechanized Translation from Higher-Order Logic to Set Theory

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6172)

Abstract

In order to make existing formalizations available for set-theoretic developments, we present an automated translation of theories from Isabelle/HOL to Isabelle/ZF. This covers all fundamental primitives, particularly type classes. The translation produces LCF-style theorems that are checked by Isabelle’s inference kernel. Type checking is replaced by explicit reasoning about set membership.

Keywords

  • Type Variable
  • Theorem Prove
  • Type Class
  • Type Check
  • Mechanized Translation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-14052-5_23
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-14052-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bortin, M., Broch Johnsen, E., Lüth, C.: Structured formal development in Isabelle. Nordic Journal of Computing 13, 1–20 (2006)

    MathSciNet  Google Scholar 

  2. Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. Furbach, U., Shankar, N. (eds.): IJCAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. Gaifman, H.: Global and local choice functions. Israel Journal of Mathematics 22(3-4), 257–265 (1975)

    CrossRef  MathSciNet  Google Scholar 

  5. Gordon, M.J.C.: Set theory, higher order logic or both? In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 191–201. Springer, Heidelberg (1996)

    Google Scholar 

  6. Gordon, M.J.C.: Twenty years of theorem proving for HOLs: Past, present and future. In: Ait Mohamed, O., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 1–5. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  7. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  8. Homeier, P.V.: The HOL-omega logic. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Lamport, L., Paulson, L.C.: Should your specification language be typed? ACM Transactions on Programming Languages and Systems 21(3), 502–526 (1999)

    CrossRef  Google Scholar 

  10. McLaughlin, S.: An interpration of Isabelle/HOL in HOL Light. In: Furbach, Shankar: [3], pp. 192–204

    Google Scholar 

  11. Moschovakis, Y.N.: Notes on Set Theory. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  12. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF=HOL+LCF. Journal of Functional Programming 9(2), 191–223 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Obua, S.: Checking conservativity of overloaded definitions in higher-order logic. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 212–226. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  14. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, Shankar: [3], pp. 298–302

    Google Scholar 

  15. Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated Reasoning 5, 363–397 (1989)

    MATH  CrossRef  MathSciNet  Google Scholar 

  16. Paulson, L.C.: Set theory for verification: I. From foundations to functions. Journal of Automated Reasoning 11, 353–389 (1993)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Pitts, A.: The HOL logic. In: Gordon, M., Melham, T. (eds.) Introduction to HOL: A theorem proving environment for Higher Order Logic, pp. 191–232. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  18. Schmidt-Schauß, M. (ed.): Computational Aspects of an Order-Sorted Logic with Term Declarations. LNCS, vol. 395. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  19. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  20. Wiedijk, F.: The QED manifesto revisited. In: Matuszewski, R., Zalewska, A. (eds.) From Insight To Proof – Festschrift in Honour of Andrzej Trybulec, pp. 121–133. University of Białystok (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krauss, A., Schropp, A. (2010). A Mechanized Translation from Higher-Order Logic to Set Theory. In: Kaufmann, M., Paulson, L.C. (eds) Interactive Theorem Proving. ITP 2010. Lecture Notes in Computer Science, vol 6172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14052-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14052-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14051-8

  • Online ISBN: 978-3-642-14052-5

  • eBook Packages: Computer ScienceComputer Science (R0)