Bortin, M., Broch Johnsen, E., Lüth, C.: Structured formal development in Isabelle. Nordic Journal of Computing 13, 1–20 (2006)
MathSciNet
Google Scholar
Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)
MATH
CrossRef
MathSciNet
Google Scholar
Furbach, U., Shankar, N. (eds.): IJCAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidelberg (2006)
MATH
Google Scholar
Gaifman, H.: Global and local choice functions. Israel Journal of Mathematics 22(3-4), 257–265 (1975)
CrossRef
MathSciNet
Google Scholar
Gordon, M.J.C.: Set theory, higher order logic or both? In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 191–201. Springer, Heidelberg (1996)
Google Scholar
Gordon, M.J.C.: Twenty years of theorem proving for HOLs: Past, present and future. In: Ait Mohamed, O., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 1–5. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Homeier, P.V.: The HOL-omega logic. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidelberg (2009)
CrossRef
Google Scholar
Lamport, L., Paulson, L.C.: Should your specification language be typed? ACM Transactions on Programming Languages and Systems 21(3), 502–526 (1999)
CrossRef
Google Scholar
McLaughlin, S.: An interpration of Isabelle/HOL in HOL Light. In: Furbach, Shankar: [3], pp. 192–204
Google Scholar
Moschovakis, Y.N.: Notes on Set Theory. Springer, Heidelberg (1994)
MATH
Google Scholar
Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF=HOL+LCF. Journal of Functional Programming 9(2), 191–223 (1999)
MATH
CrossRef
MathSciNet
Google Scholar
Obua, S.: Checking conservativity of overloaded definitions in higher-order logic. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 212–226. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, Shankar: [3], pp. 298–302
Google Scholar
Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated Reasoning 5, 363–397 (1989)
MATH
CrossRef
MathSciNet
Google Scholar
Paulson, L.C.: Set theory for verification: I. From foundations to functions. Journal of Automated Reasoning 11, 353–389 (1993)
MATH
CrossRef
MathSciNet
Google Scholar
Pitts, A.: The HOL logic. In: Gordon, M., Melham, T. (eds.) Introduction to HOL: A theorem proving environment for Higher Order Logic, pp. 191–232. Cambridge University Press, Cambridge (1993)
Google Scholar
Schmidt-Schauß, M. (ed.): Computational Aspects of an Order-Sorted Logic with Term Declarations. LNCS, vol. 395. Springer, Heidelberg (1989)
MATH
Google Scholar
Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275. Springer, Heidelberg (1997)
CrossRef
Google Scholar
Wiedijk, F.: The QED manifesto revisited. In: Matuszewski, R., Zalewska, A. (eds.) From Insight To Proof – Festschrift in Honour of Andrzej Trybulec, pp. 121–133. University of Białystok (2007)
Google Scholar