Skip to main content

Fuzzy Multivariable Gaussian Evolving Approach for Fault Detection and Diagnosis

  • Conference paper
Computational Intelligence for Knowledge-Based Systems Design (IPMU 2010)

Abstract

This paper suggests an approach for fault detection and diagnosis capable to detect new operation modes online. The approach relies upon an evolving fuzzy classifier able to incorporate new operational information using an incremental unsupervised clustering procedure. The efficiency of the approach is verified in fault detection and diagnosis of an induction machine. Experimental results suggest that the approach is a promising alternative for fault diagnosis of dynamic systems when there is no a priori information about all failure modes. It is also attractive for incremental learning of diagnosis systems with streams of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., Yin, K.: A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computers & Chemical Engineering 27(3), 293–311 (2003)

    Article  Google Scholar 

  2. Montgomery, D.: Introduction to Statistical Quality Control, 4th edn. Wiley, Chichester (2001)

    Google Scholar 

  3. Dasgupta, D., Forrest, S.: Novelty detection in time series data using ideas from immunology. In: Neural Information Processing Systems (NIPS) Conference (1996)

    Google Scholar 

  4. Wong, M., Jack, L., Nandi, A.: Modified self-organising map for automated novelty detection applied to vibration signal monitoring. Mechanical Systems and Signal Processing 20(3), 593–610 (2006)

    Article  Google Scholar 

  5. Timusk, M., Lipsett, M., Mechefske, C.K.: Fault detection using transient machine signals. Mechanical Systems and Signal Processing 22(7), 1724–1749 (2008)

    Article  Google Scholar 

  6. Markou, M., Singh, S.: Novelty detection: A review part 1: Statistical approaches. Signal Processing 83, 2499–2521 (2003)

    Article  MATH  Google Scholar 

  7. Angelov, P.P.: Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems. Springer, London (2002)

    MATH  Google Scholar 

  8. Kasabov, N., Filev, D.: Evolving intelligent systems: Methods, learning, & applications. In: International Symposium on Evolving Fuzzy Systems, pp. 8–18 (2006)

    Google Scholar 

  9. Yager, R.: A Model of Participatory Learning. IEEE Transactions on Systems Man and Cybernetics 20(5), 1229–1234 (1990)

    Article  MathSciNet  Google Scholar 

  10. Silva, L., Gomide, F., Yager, R.: Participatory learning in fuzzy clustering. In: The 14th IEEE International Conference on Fuzzy Systems, pp. 857–861 (2005)

    Google Scholar 

  11. Filev, D., Tseng, F.: Novelty detection based machine health prognostics. In: International Symposium on Evolving Fuzzy Systems, pp. 193–199 (2006)

    Google Scholar 

  12. Lughofer, E., Guardioler, C.: On-line fault detection with data-driven evolving fuzzy models. Control and Intelligent Systems 36(4), 307–317 (2008)

    Article  MATH  Google Scholar 

  13. Wang, W., Vrbanek, J.: An evolving fuzzy predictor for industrial applications. IEEE Transactions on Fuzzy Systems 16(6), 1439–1449 (2008)

    Article  Google Scholar 

  14. Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern Recognition 41(3), 995–1011 (2008); Part Special issue: Feature Generation and Machine Learning for Robust Multimodal Biometrics

    Article  MATH  Google Scholar 

  15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)

    Google Scholar 

  16. SchĂ¼rmann, J.: Pattern classification: a unified view of statistical and neural approaches. John Wiley & Sons, Inc., New York (1996)

    Google Scholar 

  17. Miller, R.: Simultaneous statistical inference. McGraw-Hill, Inc., New York (1966)

    Google Scholar 

  18. D’Angelo, M.F., Palhares, R.M., Takahashi, R.H., Loschi, R.H., Baccarini, L.M., Caminhas, W.M.: Incipient fault detection in induction machine stator-winding using a fuzzy-bayesian change point detection approach. Applied Soft Computing (2009) (in Press, Corrected Proof)

    Google Scholar 

  19. Baccarini, L.M.R., de Menezes, B.R., Caminhas, W.M.: Fault induction dynamic model, suitable for computer simulation: Simulation results and experimental validation. Mechanical Systems and Signal Processing 24(1), 300–311 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemos, A., Caminhas, W., Gomide, F. (2010). Fuzzy Multivariable Gaussian Evolving Approach for Fault Detection and Diagnosis. In: HĂ¼llermeier, E., Kruse, R., Hoffmann, F. (eds) Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. Lecture Notes in Computer Science(), vol 6178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14049-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14048-8

  • Online ISBN: 978-3-642-14049-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics