Advertisement

Auspicious Tatami Mat Arrangements

  • Alejandro Erickson
  • Frank Ruskey
  • Mark Schurch
  • Jennifer Woodcock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6196)

Abstract

We introduce tatami tilings, and present some of the many interesting questions that arise when studying them. Roughly speaking, we are considering tilings of rectilinear regions with 1 ×2 dimer tiles and 1 ×1 monomer tiles, with the constraint that no four corners of the tiles meet. Typical problems are to minimize the number of monomers in a tiling, or to count the number of tilings in a particular shape. We determine the underlying structure of tatami tilings of rectangles and use this to prove that the number of tatami tilings of an n ×n square with n monomers is n2 n − 1. We also prove that, for fixed-height, the number of tatami tilings of a rectangle is a rational function and outline an algorithm that produces the coefficients of the two polynomials of the numerator and the denominator.

Keywords

dimer monomer tatami tilings combinatorics enumeration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kenyon, R., Okounkov, A.: What is ... a dimer? Notices of the American Mathematical Society 52, 342–343 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Stanley, R.P.: On dimer coverings of rectangles of fixed width. Discrete Applied Mathematics 12(1), 81–87 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Knuth, D.E.: The Art of Computer Programming, vol. 4, fascicle 1B. Addison-Wesley, Reading (2009)zbMATHGoogle Scholar
  4. 4.
    Ruskey, F., Woodcock, J.: Counting fixed-height tatami tilings. Electronic Journal of Combinatorics 16, 20 (2009)MathSciNetGoogle Scholar
  5. 5.
    Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from horizontal and vertical projections is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Anzalone, N., Baldwin, J., Bronshtein, I., Petersen, T.K.: A reciprocity theorem for monomer-dimer coverings. In: Morvan, M., Rémila, É. (eds.) Discrete Models for Complex Systems, DMCS ’03. DMTCS Proceedings, Discrete Mathematics and Theoretical Computer Science, vol. AB, pp. 179–194 (2003)Google Scholar
  7. 7.
    Pachter, L.: Combinatorial approaches and conjectures for 2-divisibility problems concerning domino tilings of polyominoes. Electronic Journal of Combinatorics 4, 2–9 (1997)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alejandro Erickson
    • 1
  • Frank Ruskey
    • 1
  • Mark Schurch
    • 2
  • Jennifer Woodcock
    • 1
  1. 1.Department of Computer ScienceUniversity of VictoriaCanada
  2. 2.Department of Mathematics and StatisticsUniversity of VictoriaCanada

Personalised recommendations