Skip to main content

Fractional Calculus of Variations in Dynamics

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 3447 Accesses

Abstract

In mathematics and theoretical physics, variational (functional) derivative is a generalization of usual derivative that arises in the calculus of variations. In a variation instead of differentiating a function with respect to a variable, one differentiates a functional with respect to a function. Using the fractional calculus, we consider a fractional generalization of variational (functional) derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Aldrovandi, R.A. Kraenkel, 1988, On exterior variational calculus, Journal of Physics A, 21, 1329–1339.

    Article  MathSciNet  MATH  Google Scholar 

  • N.N. Bogoliubov, 1960, Problems of Dynamic Theory in Statistical Physics, Technical Information Service, Oak Ridge.

    Google Scholar 

  • N.N. Bogoliubov, 1970, Method of functional derivatives in statistical mechanics, in Selected Works, Naukova Dumka, Kiev, In Russian, 197–209.

    Google Scholar 

  • N.N. Bogoliubov, 1991, Selected Works. Part II. Quantum and Classical Statistical Mechanics, Gordon and Breach, New York.

    Google Scholar 

  • N.N. Bogoliubov, 1995, Selected Works. Part IV. Quantum Field Theory, Gordon and Breach, Amsterdam.

    Google Scholar 

  • N.N. Bogoliubov, D.V. Shirkov, 1980, Introduction to the Theory of Quantized Field, 3rd ed., Wiley, New York; and 4th ed., Nauka, Moscow, 1984. In Russian.

    Google Scholar 

  • YQ. Chen, K.L. Moore, 2002, Analytical stability bound for a class of delayed fractional-order dynamic systems, Nonlinear Dynamics, 29, 191–200.

    Article  MathSciNet  MATH  Google Scholar 

  • B.R Demidovich, 1967, Lectures on the Mathematical Theory of Stability, Nauka, Moscow. In Russian.

    Google Scholar 

  • B.A. Dubrovin, A.N. Fomenko, S.R Novikov, 1992, Modern Geometry — Methods and Applications, Part I, Springer, New York.

    Book  MATH  Google Scholar 

  • V.M. Fillipov, V.M. Savchin, S.G. Shorohov, 1992, Variational Principles for Non-potential Operators, Modern Problems of Mathematics, The Latest Achievements, Vol.40, Moscow, VINITI. In Russian.

    Google Scholar 

  • K. Fukui, 1970, A formulation of the reaction coordinate, Journal of Physical Chemistry, 74, 4161–4163.

    Article  Google Scholar 

  • K. Fukui, 1981, The path of chemical reactions-the IRS approach, Accounts of Chemical Research, 14, 363–368.

    Article  Google Scholar 

  • H. Goldstein, 1950, Classical Mechanics, Addison-Wesley, Cambridge.

    Google Scholar 

  • H. Goldstein, C.R Poole, J.L. Safko, 2002, Classical Mechanics, 3nd ed., Addison-Wesley, San Fransisco.

    Google Scholar 

  • R. Gorenflo, J. Loutchko, Y Luchko, 2002, Computation of the Mittag-Leffler function and its derivative, Fractional Calculus and Applied Analysis, 5, 491–518.

    MathSciNet  MATH  Google Scholar 

  • S.B. Hadid, J.G. Alshamani, 1986, Liapunov stability of differential equations of noninteger order, Arab Journal of Mathematics, 7, 5–17.

    MathSciNet  Google Scholar 

  • H. Helmholtz, 1889, Journal fur die Reine und Angewandte Mathematik, 10, 137–166.

    Google Scholar 

  • T.D. Khusainov, 2001, Stability analysis of a linear-fractional delay system, Differential Equations, 37, 1184–1188.

    Article  MathSciNet  MATH  Google Scholar 

  • A.A. Kubas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    Google Scholar 

  • V.l. Klyachkin, 1980, Stochastic Equations and Waves in Randomly Inhomogeneous Media, Nauka, Moscow. In Russian.

    Google Scholar 

  • R.D. Levine, J. Bernstein, 1974, Molecular Reaction Dynamics, Oxford University Press Oxford.

    Google Scholar 

  • Y Li, YQ. Chen, I. Podlubny, 2009, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965–1969.

    Article  MATH  Google Scholar 

  • I.G. Malkin, 1959, Theory of Stability of Motion, United States Atomic Energy Commission, Washington.

    MATH  Google Scholar 

  • D. Matignon, 1996, Stability result on fractional differential equations with applications to control processing, in IMACS — SMC Proceeding, Lille, France, 963–968.

    Google Scholar 

  • K.S. Miller, 1996, The Mittag-Leffler and related functions, Integral Transforms and Special Functions, 1, 41–49.

    Article  Google Scholar 

  • W.H. Miller, N.C. Hardy, J.E. Adams, 1980, Reaction path Hamiltonian for polyatomic molecules, Journal of Chemical Physics, 72, 99–112.

    Article  ADS  Google Scholar 

  • S. Momani, S.B. Hadid, 2004, Lyapunov stability solutions of fractional integrod-ifferential equations, International Journal of Mathematical Sciences, 47, 2503–2507.

    Article  MathSciNet  Google Scholar 

  • G. Nicolis, I. Prigogine, 1977, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, Wiley, New York.

    MATH  Google Scholar 

  • P.J. Olver, 1986, Application of Lie Groups to Differential Equations, Springer, New York. Chapter 4, and Section 5.4.

    Book  Google Scholar 

  • L.H. Ryder, 1985, Quantum Field Theory, Cambridge University Press, Cambridge. Chapter 6.

    MATH  Google Scholar 

  • R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, 1988, Nonlinear Physics. From the Pendulum to Turbulence and Chaos, Harwood Academic, New York.

    MATH  Google Scholar 

  • S.G. Samko, A.A. Kubas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • L.I. Sedov, 1965, Mathematical methods for constructing new models of continuous media, Russian Mathematical Surveys, 20, 123–182.

    Article  MathSciNet  ADS  Google Scholar 

  • L.I. Sedov, 1968, Models of continuous media with internal degrees of freedom, Journal of Applied Mathematics and Mechanics, 32, 803–819.

    Article  ADS  MATH  Google Scholar 

  • L.I. Sedov, 1997, Mechanics of Continuous Media, Volume 1, World Scientific Publishing, Singapore.

    MATH  Google Scholar 

  • L.I. Sedov, A.G. Tsypkin, 1989, Principles of the Microscopic Theory of Gravitation andElectromagnetism, Nauka, Moscow, Section 3.7, Section 3.8–3.12, Section 4.

    Google Scholar 

  • V.E. Tarasov, 2005a, Fractional generalization of gradient systems, Letters in Mathematical Physics, 73, 49–58.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005b, Fractional generalization of gradient and Hamiltonian systems, Journal of Physics A, 38, 5929–5943.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2006, Fractional variations for dynamical systems: Hamilton and Lagrange approaches, Journal of Physics A, 39, 8409–8425.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2007, Fractional derivative as fractional power of derivative, International Journal of Mathematics, 18, 281–299.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2008, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • N.G. Tchetaev, 1990, Stability of Motion, 4th ed., Nauka, Moscow. In Russian.

    Google Scholar 

  • A.N. Vasilev, 1998, Functional Methods in Quantum Field Theory and Statistical Physics, Gordon and Breach; and Leningrad State University, Leningrad, 1976. in Russian.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractional Calculus of Variations in Dynamics. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_14

Download citation

Publish with us

Policies and ethics