Skip to main content

Fractional Exterior Calculus and Fractional Differential Forms

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 3507 Accesses

Abstract

Differential forms and exterior calculus are important theories in mathematics. Exterior calculus have found wide applications in fields such as general relativity, theory of electromagnetic fields, thermodynamics, theory of elasticity, differential geometry, topology and nonlinear differential equations. Differential forms are the most natural language for expressing electromagnetic and gauge fields mathematically. This language is independent of coordinates. Exterior calculus of differential forms give an alternative to vector calculus, which is ultimately simpler and more nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. Ben Adda, 1997, Geometric interpretation of the fractional derivative, Journal of Fractional Calculus, 11, 21–52.

    MathSciNet  MATH  Google Scholar 

  • F. Ben Adda, 1998, Geometric interpretation of the differentiability and gradient of real order, Comptes Rendus de 1’Academie des Sciences. Series I: Mathematics, 326, 931–934. In French.

    MathSciNet  MATH  Google Scholar 

  • L. Belleguie, S. Mukamel, 1994, Nonlocal electrodynamics of weakly confined excitons in semiconductor nanostructures, Journal of Chemical Physics, 101, 9719–9735.

    Article  ADS  Google Scholar 

  • E.H. Brandt, 1972, Non-local electrodynamics in a superconductor with spatially varying gap parameter, Physics Letters A, 39, 227–228.

    Article  ADS  Google Scholar 

  • M. Chen, C.E. Byung, 1993, On the integrability of differential forms related to nonequilibrium entropy and irreversible thermodynamics, Journal of Mathematical Physics, 34, 3012–3029.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • K. Cottrill-Shepherd, M. Naber, 2001a, Fractional differential forms, Journal of Mathematical Physics, 42, 2203–2212; and E-print math-phl0301013.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • K. Cottrill-Shepherd, M. Naber, 2001b, Fractional Differential Forms II, E-print math-phl0301016.

    Google Scholar 

  • V.V. Dobronravov, 1976, Foundations of Analytical Mechanics, Vishaya Shkola, Moscow. In Russian.

    Google Scholar 

  • B.A. Dubrovin, A.N. Fomenko, S.P. Novikov, 1992, Modern Geometry — Methods and Applications, Part I, Springer, New York.

    Book  MATH  Google Scholar 

  • N. Engheta, 1998, Fractional curl operator in electromagnetics, Microwave and Optical Technology Letters, 17, 86–91.

    Article  Google Scholar 

  • H. Flanders, 1989, Differential forms with applications to the physical sciences, 2nd ed., Dover, New York.

    MATH  Google Scholar 

  • J.T. Foley, A.J. Devaney, 1975, Electrodynamics of nonlocal media, Physical Review B, 12, 3104–3112.

    Article  ADS  Google Scholar 

  • Z.D. Genchev, 1997, Generalized nonlocal electrodynamics of distributed tunnel Josephson junctions, Superconductor Science and Technology, 10, 543–546.

    Article  ADS  Google Scholar 

  • C. Godbillon, 1969, Geometrie Differentielle et Mecanique Analytique, Hermann, Paris.

    Google Scholar 

  • P.A. Griffiths, 1983, Exterior Differential Systems and the Calculus of Variations, Birkhauser, Boston.

    MATH  Google Scholar 

  • D. Husemoller, 1966, Fibre Bundles, Mcgraw-Hill, New York.

    MATH  Google Scholar 

  • A. Hussain, S. Ishfaq, Q.A. Naqvi, 2006, Fractional curl operator and fractional waveguides, Progress In Electromagnetics Research, 63, 319–335.

    Article  Google Scholar 

  • A. Hussain, Q.A. Naqvi, 2006, Fractional curl operator in chiral medium and fractional non-symmetric transmission line, Progress In Electromagnetics Research, 59, 199–213.

    Article  Google Scholar 

  • M.V. Ivakhnychenko, E.I. Veliev, 2004, Fractional curl operator in radiation problems, 10th International Conference on Mathematical Methods in Electromagnetic Theory. Sept. 14–17, Ukraine, IEEE, 231–233.

    Chapter  Google Scholar 

  • K.K. Kazbekov, 2005, Fractional differential forms in Euclidean space, Vladikavkaz Mathematical Journal, 7, 41–54. In Russian, http: //www.vmj.ru/articles/20052_5.pdf

    MathSciNet  Google Scholar 

  • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fmctional Differential Equations, Elsevier, Amsterdam.

    Google Scholar 

  • J. Lutzen, 1985, Liouville’s differential calculus of arbitrary order and its electrodynamical origin, in Proc. 19th Nordic Congress Mathenzaticians, Icelandic Mathematical Society, Reykjavik.

    Google Scholar 

  • B. Mashhoon, 2003, Vacuum electrodynamics of accelerated systems: Nonlocal Maxwell’s equations, Annalen der Physik (Leipzig), 12, 586–598.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • B. Mashhoon, 2004, Nonlocal electrodynamics of linearly accelerated systems, Physical Review A, 70, 062103.

    Article  MathSciNet  ADS  Google Scholar 

  • B. Mashhoon, 2005, Nonlocal electrodynamics of rotating systems, Physical Review A, 72, 052105.

    Article  ADS  Google Scholar 

  • M.M. Meerschaert, J. Mortensen, S.W. Wheatcraft, 2006, Fractional vector calculus for fractional advection-dispersion, Physica A, 367, 181–190; and New Zealand Mathematics Colloquium, Massey University, Palmerston North, New Zealand, December 2005, http://www.stt.msu.edd/mcubed/MathsColloq05.pdf

    Article  ADS  Google Scholar 

  • Q.A. Naqvi, M. Abbas, 2004, Complex and higher order fractional curl operator in electromagnetics, Optics Communications, 241, 349–355.

    Article  ADS  Google Scholar 

  • S.A. Naqvi, Q.A. Naqvi, A. Hussain, 2006, Modelling of transmission through a chiral slab using fractional curl operator, Optics Communications, 266, 404–406.

    Article  ADS  Google Scholar 

  • K. Nishimoto, 1989, Fractional Calculus: Integrations and Differentiations of Arbitrary Order, University of New Haven Press, New Haven.

    MATH  Google Scholar 

  • T. Pierantozzi, L. Vazquez, 2005, An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like, Journal of Mathematical Physics, 46, 113512.

    Article  MathSciNet  ADS  Google Scholar 

  • I. Podlubny, 1999, Fractional Differential Equations, Academic Press, New York.

    MATH  Google Scholar 

  • S.G. Samko, A.A. Kilbas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • V.E. Tarasov, 2005a, Fractional generalization of gradient systems, Letters in Mathematical Physics, 73, 49–58.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005b, Fractional generalization of gradient and Hamiltonian systems, Journal of Physics A, 38, 5929–5943.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2005c, Fractional hydrodynamic equations for fractal media, Annals of Physics, 318, 286–307.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005d, Electromagnetic field of fractal distribution of charged particles, Physics of Plasmas, 12, 082106.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2005e. Multipole moments of fractal distribution of charges, Modern Physics Letters B, 19, 1107–1118.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2006a, Magnetohydrodynamics of fractal media, Physics of Plasmas, 13, 052107.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2006b, Electromagnetic fields on fractals, Modern Physics Letters A, 21, 1587–1600.

    Article  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2006c, Fractional statistical mechanics, Chaos, 16, 033108.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2006d, Continuous limit of discrete systems with long-range interaction, Journal of Physics A, 39, 14895–14910.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2006e, Map of discrete system into continuous, Journal of Mathematical Physics, 47, 092901.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2007, Liouville and Bogoliubov equations with fractional derivatives, Modern Physics Letters B, 21, 237–248.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2008a, Fractional vector calculus and fractional Maxwell’s equations, Annals of Physics, 323, 2756–2778.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2008b, Universal electromagnetic waves in dielectric, Journal of Physics A, 20, 175223.

    ADS  Google Scholar 

  • E.I. Veliev, N. Engheta, 2004, Fractional curl operator in reflection problems, 10th International Conference on Mathematical Methods in Electromagnetic Theory, Sept. 14–17, Ukraine, IEEE, 228–230.

    Chapter  Google Scholar 

  • G. Vilasi, 2001, Hamiltonian Dynamics, World Scientific Publishing, Singapore.

    Book  MATH  Google Scholar 

  • C. von Westenholz, 1978, Differential Forms in Mathematical Physics, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Chen Yong, Yan Zhen-ya, Zhang Hong-qing, 2003, Applications of fractional exterior differential in three-dimensional space, Applied Mathematics and Mechanics, 24, 256–260.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractional Exterior Calculus and Fractional Differential Forms. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_12

Download citation

Publish with us

Policies and ethics