Skip to main content

Rotational Motion

  • Chapter
  • First Online:
Computational Physics
  • 2947 Accesses

Abstract

An asymmetric top under the influence of time-dependent external forces is a rather complicated subject in mechanics. Efficient methods to describe the rotational motion are important as well in astrophysics as in molecular physics. The orientation of a rigid body relative to the laboratory system can be described by a rotation matrix. The equation of motion for the rotation matrix is derived. Different ways are discussed to parametrize the rotation matrix with a special focus on the representation by quaternions which is very efficient and avoids singularities inherent to the more common Euler angles. Methods to integrate the equations of motion are studied. Simple first- or second-order methods do not conserve orthogonality without special correction schemes. An implicit method avoids the loss of orthogonality. Computer experiments simulate a dipole rotating in a field and the collision of two rotating molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989) ISBN 0-19-855645-4

    Google Scholar 

  2. R. Sonnenschein, A. Laaksonen, E. Clementi, J. Comput. Chem. 7, 645 (1986)

    Article  Google Scholar 

  3. I.P. Omelyan, Phys. Rev. 58, 1169 (1998)

    Article  ADS  Google Scholar 

  4. I.P. Omelyan, Comput. Phys. Comm. 109, 171 (1998)

    Article  MATH  ADS  Google Scholar 

  5. H. Goldstein, Klassische Mechanik (Akademische Verlagsgesellschaft, Frankfurt a.Main, 1974)

    MATH  Google Scholar 

  6. I.P. Omelyan, Comput. Phys. 12, 97 (1998)

    Article  ADS  Google Scholar 

  7. D.C. Rapaport, The Art of Molecular Dynamics Simulation. (Cambridge University Press, Cambridge, 2004) ISBN 0-521-44561-2.

    MATH  Google Scholar 

  8. T. Schlick, Molecular Modeling and Simulation (Springer, New York, NY, 2002) ISBN 0-387-95404-X

    MATH  Google Scholar 

  9. F. Schwabl, Statistical Mechanics (Springer, Berlin, 2003)

    Google Scholar 

  10. H. Risken, The Fokker-Planck Equation (Springer, Berlin Heidelberg, 1989)

    MATH  Google Scholar 

  11. E. Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Phys. 31, 253–258 (1925). doi:10.1007/BF02980577

    Google Scholar 

  12. K. Binder, in “Ising model” Encyclopedia of Mathematics, Suppl. vol. 2, ed. by R. Hoksbergen (Kluwer, Dordrecht, 2000), pp. 279–281

    Google Scholar 

  13. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, MA, 1973) ISBN 0674914406

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp O.J. Scherer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherer, P.O. (2010). Rotational Motion. In: Computational Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13990-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13990-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13989-5

  • Online ISBN: 978-3-642-13990-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics