Skip to main content

Factors Controlling Base-Level Elevation Changes

  • Chapter
  • First Online:
Groundwater Base Level Changes and Adjoining Hydrological Systems
  • 700 Accesses

Abstract

Groundwater base-level changes can stem from the drop or rise of the base-level or the subsidence or uplift of the adjoining groundwater basin. In some cases, a combination of both is also possible. The main factors that control variations in groundwater base-level elevation are detailed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baedke SJ, Thompson TA (2000) A 4,700-year record of lake level and isostasy for lake Michigan. J Great Lakes Res 26:416–426

    Article  Google Scholar 

  • Baer G, Schattner U, Wachs D, Sandwell D, Wdowinski S, Frydman S (2002) The lowest place on Earth is subsiding – an InSAR (interferometric synthetic aperture radar) perspective. Geol Soc Am Bull 114:12–23

    Article  Google Scholar 

  • Bau D, Ferronato M, Gambolati G, Teatini P (2001) Land subsidence spreading factor of the northern Adriatic gas fields, Italy. Int J Geomech 1:459–476

    Article  Google Scholar 

  • Bertoni W, Bratti C, Carbognin L, Cesi C, Chierici GL, Dossena G, Guerricchio A, La Monica U, La Tegola A, Succetti A (2000) Analysis of subsidence in the Crotone area along the Ionian coast of Calabria, Italy. Proc 6th Int Symp Land Subsid, Ravenna 1:155–166

    Google Scholar 

  • Borodavko P, Carling P, Parnachov S, Herget J, Clark C, Huggenberger P (2003) The shoreline morphology and the Quaternary lake Chuja-Kuray, Altai mountains, south-central Siberia. XVI INQUA Congress. Geol Soc Am Abstr Programs 183

    Google Scholar 

  • Brunamonte F, Cavelli S, Serva L, Valente A (2000) Subsidence phenomena in the evolution of Potina Plain, Italy. Proc 6th Int Symp Land Subsid, Ravenna 1:53–58

    Google Scholar 

  • Bull WB (1973) Geologic factors affecting compaction of deposits in land-subsidence area. Geol Soc Am Bull 84:3783–3802

    Article  Google Scholar 

  • Carruth RL, Pool DR, Anderson CE (2007) Land subsidence and aquifer-system compaction in the Tucson active management area, south-central Arizona, 1987–2005. US Geol Surv Sci Investig Rep 2007–5190, 27 pp

    Google Scholar 

  • Castiglia PJ, Fawcett PJ (2006) Large Holocene lakes and climate change in the Chihuahuan Desert. Geology 34:113–116

    Article  Google Scholar 

  • Chan AW, Zoback M D (2007) The role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana coastal zone. J Coast Res 23:771–786

    Article  Google Scholar 

  • Chen C, Pei S, Jiao JJ (2003) Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeol J 11:275–287

    Article  Google Scholar 

  • Chilingar GV, Sorokhtin OG, Khilyuk L, Gorfunkel MV (2009) Greenhouse gases and greenhouse effect. Environ Geol 58:1207–1213

    Article  Google Scholar 

  • Collier RELL (1990) Eustatic and tectonic controls upon quaternary coastal sedimentation in the Corinth Basin, Greece. J Geol Soc Lond 147:301–314

    Article  Google Scholar 

  • Colman SM (1998) Water-level changes in Lake Baikal, Siberia: Tectonism versus climate. Geology 26:531–534

    Article  Google Scholar 

  • Cucci L (2004) Raised marine terraces in the Northern Calabrian Arc (Southern Italy): a – 600 kyr-long geological record of regional uplift. Ann Geophys 47:1391–1406

    Google Scholar 

  • DeVogel SB, Magee JW, Manley WF, Miller GH (2004) A GIS-based reconstruction of late quaternary paleohydrology: Lake Eyre, arid central Australia. Palaeogr Palaeoclimatol Palaeoecol 204:1–13

    Article  Google Scholar 

  • Dintelmann D (2004) Comparing the potentiometric surface of a cone of depression near Springfield, Missouri: 1980's and present. Geol Soc Am Abstr Programs 3:3

    Google Scholar 

  • Drake N, Bristow C (2006) Shorelines in the Sahara:geomorphological evidence for an enhanced monsoon from palaeolake Megachad. Holocene 16:901–911

    Article  Google Scholar 

  • Dumas B, Gueremy P, Lhenaff R, Raffy J (2006) Rapid uplift, stepped marine terraces and raised shorelines on the Calabrian coast of Messina Strait, Italy. Earth Surf Process Landf 18:241–256

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting dates on the Younger Dryas event and deep ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Fjeldskaar W, Cathles L (1991) The present rate of uplift of Fennoscandia implies a low-viscosity asthenosphere. Terra Nova 3:393–400

    Article  Google Scholar 

  • Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quat Sci Rev 19:1413–1422

    Article  Google Scholar 

  • Fleming K, Johnson P, Zwart D, Yokoyama Y, Lambeck K and Chappell J (1998) Refining the eustatic sea-level curve since the last glacial maximum using far- and intermediate-field sites. Earth Planet Sci Lett 163:327–342

    Article  Google Scholar 

  • Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34:2573–2585

    Article  Google Scholar 

  • Gambolati G, Teatini P (2000) The impact of climate change, sea-storm events and land subsidence in the Adriatic (December 1999). FEEM Working Paper No. 21

    Google Scholar 

  • Garcin Y, Junginger A, Trauth MH, Melnick D, Strecker MR, Olago DO, Maslin M (2008) Major climatic changes in equatorial East Africa during the late Pleistocene and Holocene: reconstruction from paleo-shorelines in the Suguta Valley, northern Kenya Rift. Geophys Res Abstr EGU2008-A-03297

    Google Scholar 

  • Glowasca E, Sarychikhina O, Suarez F, Nava FA, Mellors R (2010) Anthropogenic subsidence in the Mexicali Valley, Baja California, Mexico, and slip on the Saltillo fault. Environ Earth Sci 59:1515–1524

    Article  Google Scholar 

  • Gregersen S (2006) Intraplate earthquakes in Scandinavia and Greenland neotectonics or postglacial uplift. J Indian Geophys Union 10:25–30

    Google Scholar 

  • Griffin DL (2002) Aridity and humidity: two aspects of the late Miocene climate of North Africa and the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 182:65–91

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail P (1987) Chronology of fluctuating sea levels since Triassic (250 million years ago to present). Science 235:1156–1167

    Article  Google Scholar 

  • Helfert M, Holz R (1985) Multi-source verification of the desiccation of Lake Chad, Africa. Adv Space Res 5:379–384

    Article  Google Scholar 

  • Hoffman, PF, Kaufman, AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball earth. Science 281:1342–1346

    Article  Google Scholar 

  • Houtenbos APEM. (2000) The quantification of subsidence due to gas-extraction in the Netherlands. Proc 6th Int Symp Land Subsid, Ravenna 1:177–189

    Google Scholar 

  • IPCC Fourth Assessment Report (2007) Chapter 3 http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter3

  • Jianren L, Lowenstein TK, Brown BC, Ku T-L, Luo S (1996) A 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California. Palaeogr Palaeoclimatol Palaeoecol 123:179–203

    Article  Google Scholar 

  • Kafri U, Kaufman A, Magaritz M (1983) The rate of Pleistocene subsidence and sedimentation in the Hula Basin as compared with those of other time spans in other Israeli tectonic regions. Earth Planet Sci Lett 65:126–132

    Article  Google Scholar 

  • Kafri U, Ecker A (1964) Neogene and quaternary subsurface geology and hydrogeology of the Zevulun Plain. Isr Geol Surv Bull 37:1–13

    Google Scholar 

  • Kolomiets VL (2008) Paleogeography and quaternary terrace sediments and complexes, intermontane basins of Prebaikalia (Southeastern Siberia, Russia). Quat Int 179:58–63

    Article  Google Scholar 

  • Kominz MA, Miller KG and Browning JV (1998) Long-term and short-term global Cenozoic sea-level estimates. Geology 26:311–314

    Article  Google Scholar 

  • Kooi H, de Vries JJ (1998) Land subsidence and hydrodynamic compaction of sedimentary basins. Hydrol Earth Syst Sci 2:159–171

    Article  Google Scholar 

  • Kooi H, Groen J (2003) Geological processes and the management of groundwater resources in coastal areas. Geol Mijnb 82:31–40

    Google Scholar 

  • Lambeck K (1991) Glacial rebound and sea-level change in the British Isles. Terra Nova 3:379–389

    Article  Google Scholar 

  • Larson KJ, Basagaoglu H, Marino MA (2001) Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model. J Hydrol 242:79–102

    Article  Google Scholar 

  • Leblanc M, Favreau G, Tweed S, Leduc C, Razack M, Mofor L (2007) Remote sensing for groundwater modeling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeol J 15:97–100

    Article  Google Scholar 

  • Liu Y, Helm DC (2008) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal:1. Methods. Water Resour Res 44:W07423

    Article  Google Scholar 

  • Liu C, Yu J, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China Plain. Water Int 26:265–272

    Article  Google Scholar 

  • Lowenstein TK, Jianren L, Brown C, Roberts SM, Ku T-L, Luo S, Yang W (1999) 200 k.y. paleoclimate record from Death Valley salt core. Geology 27:3–6

    Article  Google Scholar 

  • Ma R, Wang Y, Ma T, Sun Z, Yan S (2006) The effect of stratigraphic heterogeneity on a real distribution of land subsidence at Taiyuan, northern China. Environ Geol 50:551–568

    Article  Google Scholar 

  • Magee JW, Miller GH, Spooner NA, Questiaux D (2004) Continuous 150 k.y. monsoon record from Lake Eyre, Australia: insolation-forcing implications and unexpected Holocene failure. Geology 32:885–888

    Article  Google Scholar 

  • Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LA, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769–1772

    Article  Google Scholar 

  • Miner RE, Nelson ST, Tingey DG, Murrell MT (2007) Using fossil spring deposits in the Death Valley region, USA to evaluate palaeoflowpaths. J Quat Sci 22:373–386

    Article  Google Scholar 

  • Moerner N-A (1991) Course and origin of the Fennoscandian uplift: the case for two separate mechanisms. Terra Nova 3:408–413

    Article  Google Scholar 

  • Monjoie A, Paepe R, Su HY (1992) Land subsidence in Shanghai (P. R. of China). Bull Eng Geol Environ 46:5–7

    Google Scholar 

  • Petalas C, Lambrakis N (2006) Simulation of intense salinization phenomena in coastal aquifer-the case of the coastal aquifers of Thrace. J Hydrol 324:51–64

    Article  Google Scholar 

  • Popov SV, Shcherba IG, Llyina LB, Nevesskaya LA, Paramonova NP, Khondkarian SO, Magyar I (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 238:91–106

    Article  Google Scholar 

  • Qin B, Yu G (1998) Implications of lake levels variations at 6 ka and 18 ka in mainland Asia. Glob Planet Change 18:59–72

    Article  Google Scholar 

  • Ramirez-Herrera M-T, Urrutia-Fucugauchi J (1999) Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico. Geomorphology 28:237–250

    Article  Google Scholar 

  • Rieke HH, Chilingar GV (1974) Compaction of argillaceous sediments, developments in sedimentology 16. Elsevier Scientific Publisher, Amsterdam, New York

    Google Scholar 

  • Rossi A, Calore C, Pizzi U (2000) Land subsidence of Pisa Plain, Italy: Experimental results and preliminary modeling study. Proc 6th Int Symp Land Subsid, Ravenna, 1:91–103

    Google Scholar 

  • Rostami K, Peltier WR, Mangini A (2000) Quaternary marine terraces, sea-level changes and uplift history of Patagonia, Argentina: comparisons with predictions of the ICE-4G (VM2) model of the global process of glacial isostatic adjustment. Quat Sci Rev 19:1495–1525

    Article  Google Scholar 

  • Rychagov GI (1997) Holocene oscillations of the Caspian Sea, and forecasts based on palaeogeographical reconstructions. Quat Int 41–42:167–172

    Article  Google Scholar 

  • Sahagian DL and Holland SM (1991) Eustatic sea-level curve based on a stable frame of reference: preliminary results. Geology 19:1209–1212

    Article  Google Scholar 

  • Schilling KE (2007) Water table fluctuations under three riparian land covers, Iowa (USA). Hydrol Process 21:2415–2424

    Article  Google Scholar 

  • Scholz CA, Rosendahl BR (1988) Low lake stands in Lakes Malawi and Tanganayika, East Africa, delineated with multifold seismic data. Science 240:1645–1648

    Article  Google Scholar 

  • Schmorak S, Mercado A (1969) Upcoming of freshwater–seawater interface below pumping wells. Field study. Water Resour Res 5:1290–1311

    Article  Google Scholar 

  • Shearer TR (1998) A numerical model to calculate land subsidence, applied at Hangu in China. Eng Geol 49:85–93

    Article  Google Scholar 

  • Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Processes 13:1277–1287

    Article  Google Scholar 

  • Shi X, Wu J, Ye S, Zhang Y, Xue Y, Wei Z, Li Q, Yu J (2008) Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China. Eng Geol 100:27–42

    Article  Google Scholar 

  • Stein M (2001) The sedimentary and geochemical record of Neogene-quaternary water bodies in the Dead Sea basin-inferences for the regional paleoclimatic history. J Paleolimnol 26:271–282

    Article  Google Scholar 

  • Steinich B, Escolero O, Marin LE (1998) Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrogeol J 6:518–526

    Article  Google Scholar 

  • Sun H, Grandstaff D, Shagam R (1999) Land subsidence due to groundwater withdrawal: potential damage of subsidence and sea level rise in southern New Jersey, USA. Environ Geol 37:290–296

    Article  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Gonella M (2006), Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour Res 42:W01406

    Article  Google Scholar 

  • Terzaghi K (1925) Principles of soil mechanics, IV-settlement and consolidation of clay. Eng News Rec 95:874–878

    Google Scholar 

  • Trauth MH, Deino AL, Brgner AGN, Strecker MR (2003) East African climate change and orbital forcing during the last 175 kyr BP. Earth Planet Sci Lett 206:297–313

    Article  Google Scholar 

  • Waldmann N, Stein M, Ariztegui D, Starinsky A (2009) Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea basin. Quat Res 72:1–15

    Article  Google Scholar 

  • Warrick RA, Oerlemans J, Woodworth PL, Meier MF, Le Provost C (1996) Changes in sea level. In: Houghton JT, Meira Filho LG, Callander BA (eds) Climate Changes 1995: The Science of Climate, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel of Climate Changes. Cambridge University Press, 359–405

    Google Scholar 

  • Williams PW (1982) Speleothems dates, quaternary terraces and uplift rates in New Zealand. Nature 298:257–260

    Article  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • Winter TC, Harvey, JW, Franke OL, Alley WM (2002) Groundwater and surface water – a single resource. US Geol Surv Circular 1139:79

    Google Scholar 

  • Yang B, Shi Y, Braeuning A, Wang J (2004) Evidence for a warm-humid climate in arid northwestern China during 40–30 ka BP. Quat Sci Rev 23:2537–2548

    Article  Google Scholar 

  • Zhang Y, Xue Y-Q, Wu J-C, Yu J, Wei Z-X, Li Q-F (2007) Land subsidence and earth fissures due to groundwater withdrawal in the southern Yangtze Delta, China. Environ Geol 55:751–762

    Article  Google Scholar 

  • Zhou X, Yan X, Li J, Yao J, Dai W (2007) Evolution of the groundwater environment under a long-term exploitation in the coastal area near Zhanjiang, China. Environ Geol 51:847–856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Kafri .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kafri, U., Yechieli, Y. (2010). Factors Controlling Base-Level Elevation Changes. In: Groundwater Base Level Changes and Adjoining Hydrological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13944-4_3

Download citation

Publish with us

Policies and ethics