Aggregation Operators for Evaluating Alternatives

  • Vicenç Torra
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 254)


This chapter reviews the use of aggregation functions and operators in the field of decision making. We first present an overview of main decision making problems, and, then, we show that aggregation operators are in common use for solving them. Once having presented their interest, we describe the major aggregation operators, their properties and their major differences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouyssou, D., Marchant, T., Pirlot, M., Perny, P., Tsoukiàs, A., Vincke, P.: Evaluation and Decision Models: A Critical Perspective. Kluwer’s International Series. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  2. 2.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953/1954)MathSciNetGoogle Scholar
  3. 3.
    Figuera, J., Mousseau, V., Roy, B.: Electre Methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multi Criteria Decision Analysis: State of the Art Surveys. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)zbMATHGoogle Scholar
  5. 5.
    Geldermann, J., Rentz, O.: Bridging the Gap between American and European MADM-Approaches? In: Proc. of the 51st Meeting of the European Working Group “Multicriteria Aid for Decisions”, Madrid (2000)Google Scholar
  6. 6.
    Narukawa, Y., Torra, V.: Twofold integral and Multi-step Choquet integral. Kybernetika 40(1), 39–50 (2004)MathSciNetGoogle Scholar
  7. 7.
    Narukawa, Y., Torra, V.: Graphical interpretation of the twofold integral and its generalization. Int. J. of Unc., Fuzz. and Knowledge Based Systems 13(4), 415–424 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rapoport, A.: Decision Theory and Decision Behavior. Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
  9. 9.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic Publishers, Dordrecht (1996)zbMATHGoogle Scholar
  10. 10.
    Roy, B., Vanderpooten, D.: The European school of MCDA: Emergence, basic features and current works. J. of Multi-Criteria Decision Analysis 5(1), 22–38 (1998)CrossRefGoogle Scholar
  11. 11.
    Sugeno, M.: Theory of Fuzzy Integrals and its Applications. Ph. D. Dissertation, Tokyo Institute of Technology, Tokyo, Japan (1974)Google Scholar
  12. 12.
    Tanino, T., Tanaka, T., Inuiguchi, M. (eds.): Multi-Objective Programming and Goal Programming. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Torra, V.: The weighted OWA operator. Int. J. of Intel. Syst. 12, 153–166 (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Torra, V.: The WOWA operator and the interpolation function W*: Chen and Otto’s interpolation method revisited. Fuzzy Sets and Systems 113(3), 389–396 (2000)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Torra, V.: La integral doble o twofold integral: Una generalització de les integrals de Choquet i Sugeno, Butlletí de l’Associació Catalana d’Inte·igència Artificial 29 13-19. Preliminary version in English: Twofold integral: A generalization of Choquet and Sugeno integral, IIIA Technical Report TR-2003-08 (2003)Google Scholar
  16. 16.
    Torra, V., Lv: On the WOWA operator and its interpolation function. Int. J. of Intel. Systems (2009) (in press), doi:10.1002/int.20371Google Scholar
  17. 17.
    Torra, V., Narukawa, Y.: The interpretation of fuzzy integrals and their application to fuzzy systems. Int. J. of Approx. Reasoning 41(1), 43–58 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Torra, V., Narukawa, Y.: Modeling decisions: information fusion and aggregation operators. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    Torra, V., Narukawa, Y.: Modelització de decisions: fusió d’informació i operadors d’agregació. UAB Press (2007)Google Scholar
  20. 20.
    Valls, A.: ClusDM: A Multiple Criteria Decision Making Method for Heterogeneous Data Sets. Monografies de l’IIIA (2003)Google Scholar
  21. 21.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. on Systems, Man and Cybernetics 18, 183–190 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yager, R.R., Kacprzyk, J. (eds.): The Ordered Weighted Averaging Operators: Theory and Applications. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vicenç Torra
    • 1
  1. 1.IIIA-CSIC, Campus UAB s/nBellaterraSpain

Personalised recommendations