Fuzzy Random Redundancy Allocation Problems

  • Shuming Wang
  • Junzo Watada
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 254)


Due to subjective judgement, imprecise human knowledge and perception in capturing statistical data, the real data of lifetimes in many systems are both random and fuzzy in nature. Based on the fuzzy random variables that are used to characterize the lifetimes, this paper studies the redundancy allocation problems to a fuzzy random parallel-series system.

Two fuzzy random redundancy allocation models (FR-RAM) are developed through reliability maximization and cost minimization, respectively. Some properties of the FR-RAM are obtained, where an analytical formula of reliability with convex lifetimes is derived and the sensitivity of the reliability is discussed. To solve the FR-RAMs, we first address the computation of reliability. A random simulation method based on the derived analytical formula is proposed to compute the reliability with convex lifetimes. As for the reliability with nonconvex lifetimes, the technique of fuzzy random simulation together with the discretization method of fuzzy random variable is employed to compute the reliability, and a convergence theorem of the fuzzy random simulation is proved. Subsequently, we integrate the computation approaches of the reliability and genetic algorithm (GA) to search for the approximately optimal redundancy allocation of the models. Finally, some numerical examples are provided to illustrate the feasibility of the solution algorithm and quantify its effectiveness.


Reliability Redundancy allocation Parallel-series system Fuzzy random variable Sensitivity Convergence Genetic algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing. Holt, Rinehart (1975)Google Scholar
  2. 2.
    Bag, S., Chakraborty, D., Roy, A.R.: A production inventory model with fuzzy random demand and with flexibility and reliability considerations. Computers & Industrial Engineering 56, 411–416 (2009)CrossRefGoogle Scholar
  3. 3.
    Das, K., Roy, T.K., Maiti, M.: Multi-item stochastic and fuzzy-stochastic inventory models under two restrictions. Computers & Operations Research 31, 1793–1806 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dutta, P., Chakraborty, D., Roy, A.R.: A single-period inventory model with fuzzy random variable demand. Mathematical and Computer Modelling 41, 915–922 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Elegbede, A.O.C., Chu, C., Adjallah, K.H., Yalaoui, F.: Reliability allocation through cost minimization. IEEE Transactions on Reliability 52, 106–111 (2003)CrossRefGoogle Scholar
  6. 6.
    Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)zbMATHGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Holland, J.: Adaptation in Natural and Artifical Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  9. 9.
    Huang, X.: A new perspective for optimal portfolio selection with random fuzzy returns. Information Sciences 177, 5404–5414 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Huang, T., Zhao, R., Tang, W.: Risk model with fuzzy random individual claim amount. European Journal of Operational Research 192, 879–890 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets and Systems 122, 327–348 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kruse, R., Meyer, K.D.: Statistics with Vague Data. D. Reidel Publishing Company, Dordrecht (1987)zbMATHGoogle Scholar
  13. 13.
    Kuo, W., Prasad, V.R., Tillman, F.A., Hwang, C.L.: Optimal Reliability Design. Cambridge University Press, Cambridge (2001)Google Scholar
  14. 14.
    Kuo, W., Wan, R.: Recent Advances in Optimal Reliability Allocation. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 38, 143–156 (2008)Google Scholar
  15. 15.
    Kwakernaak, H.: Fuzzy random variables–I. Definitions and theorems. Information Sciences 15, 1–29 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kwakernaak, H.: Fuzzy random variables–II. Algorithm and examples. Information Sciences 17, 253–278 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Li, B., Zhu, M., Xu, K.: A practical engineering method for fuzzy reliability analysis of mechanical structures. Reliability Engineering & System Safety 67, 311–315 (2000)CrossRefGoogle Scholar
  18. 18.
    Liu, B.: Theory and Practice of Uncertain Programming. Physica-Verlag, Heidelberg (2002)zbMATHGoogle Scholar
  19. 19.
    Liu, B.: Uncertainty Theory, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  20. 20.
    Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Transaction on Fuzzy Systems 10, 445–450 (2002)CrossRefGoogle Scholar
  21. 21.
    Liu, Y.K.: The approximation method for two-stage fuzzy random programming with recourse. IEEE Transactions on Fuzzy Systems 15, 1197–1208 (2007)CrossRefGoogle Scholar
  22. 22.
    Liu, Y.K., Liu, B.: Fuzzy random variable: A scalar expected value operator. Fuzzy Optimization and Decision Making 2, 143–160 (2003)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Liu, Y.K., Liu, B.: On minimum-risk problems in fuzzy random decision systems. Computers & Operations Research 32, 257–283 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    López-Diaz, M., Gil, M.A.: Constructive definitions of fuzzy random variables. Statistics and Probability Letters 36, 135–143 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Mahapatra, G.S., Roy, T.K.: Fuzzy multi-objective mathematical programming on reliability optimization model. Applied Mathematics and Computation 174, 643–659 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Michalewicz, Z.: Genetic Algorithms + Data Stractures = Evolution Programs. Springer, New York (1994)Google Scholar
  27. 27.
    Nahmias, S.: Fuzzy variable. Fuzzy Sets and Systems 1, 97–101 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets, Analysis and Design. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  29. 29.
    Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. J. Wiley, Hoboken (2007)Google Scholar
  30. 30.
    Prasad, V.R., Raghavachari, M.: Optimal allocation of interchangeable components in a series-parallel system. IEEE Transactions on Reliability 47, 255–260 (1998)CrossRefGoogle Scholar
  31. 31.
    Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  32. 32.
    Smimou, K., Bector, C.R., Jacoby, G.: Portfolio selection subject to experts’ judgments. International Review of Financial Analysis 117, 1036–1054 (2008)CrossRefGoogle Scholar
  33. 33.
    Tavakkoli-Moghaddam, R., Safari, J., Sassani, F.: Reliability optimization of series-parallel system with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering & System Safety 93, 550–556 (2008)CrossRefGoogle Scholar
  34. 34.
    Wang, S., Liu, Y., Dai, X.: On the continuity and absolute continuity of credibility functions. Journal of Uncertain Systems 1, 185–200 (2007)zbMATHGoogle Scholar
  35. 35.
    Wang, S., Watada, J.: T-independence condition for fuzzy random vector based on continuous triangular norms. Journal of Uncertain Systems 2, 155–160 (2008)Google Scholar
  36. 36.
    Wang, S., Watada, J.: Studying distribution functions of fuzzy random variables and its applications to critical value functions. International Journal of Innovative Computing, Information & Control 5, 279–292 (2009)Google Scholar
  37. 37.
    Wang, S., Liu, Y.K., Watada, J.: Fuzzy random renewal process with queueing applications. Computers & Mathematics with Applications 57, 1232–1248 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Watada, J., Wang, S.: Regression model based on fuzzy random variables. In: Rodulf, S. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives, ch. 26. Spring, Berlin (2009)Google Scholar
  39. 39.
    Watada, J., Wang, S., Pedrycz, W.: Building confidence-interval-based fuzzy random regression models. IEEE Transactions on Fuzzy Systems (to be published)Google Scholar
  40. 40.
    Xu, J., Liu, Y.G.: Multi-objective decision making model under fuzzy random environment and its application to inventory problems. Information Sciences 178, 2899–2914 (2008)zbMATHCrossRefGoogle Scholar
  41. 41.
    Yu, H., Chu, C., Chatelet, E., Yalaoui, F.: Reliability optimization of a redunant system with failure dependencies. Reliability Engineering & System Safety 92, 1627–1634 (2007)CrossRefGoogle Scholar
  42. 42.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) – an outline. Information Sciences 172, 1–40 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Zadeh, L.A.: Generalized theory of uncertainty (GTU) – principal concepts and ideas. Computational Statistics & Data Analysis 51, 15–46 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Zhao, R., Liu, B.: Redundancy optimization problems with uncertainty of combining randomness and fuzziness. European Journal of Operational Research 157, 716–735 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Zhao, R., Liu, B.: Standby redundancy optimization problems with fuzzy lifetimes. Computers & Industrial Engineering 49, 318–338 (2005)CrossRefGoogle Scholar
  48. 48.
    Zhao, R., Tang, W.S.: Some properties of fuzzy random renewal processes. IEEE Transactions on Fuzzy Systems 14, 173–179 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shuming Wang
    • 1
  • Junzo Watada
    • 1
  1. 1.Graduate School of Information, Production and SystemsWaseda UniversityKitakyushuJapan

Personalised recommendations