Advertisement

Fuzzy Dynamic Programming Problem for Extremal Fuzzy Dynamic System

  • Gia Sirbiladze
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 254)

Abstract

This work deals with the problems of the Expremal Fuzzy Continuous Dynamic System (EFCDS) optimization problems and briefly discuss the results developed by G. Sirbiladze [31]–[38]. The basic properties of extended extremal fuzzy measure are considered and several variants of their representation are given. In considering extremal fuzzy measures, several transformation theorems are represented for extended lower and upper Sugeno integrals. Values of extended extremal conditional fuzzy measures are defined as a levels of an expert knowledge reflections of EFCDS states in the fuzzy time intervals. The notions of extremal fuzzy time moments and intervals are introduced and their monotone algebraic structures that form the most important part of the fuzzy instrument of modeling extremal fuzzy dynamic systems are discussed. New approaches in modeling of EFCDS are developed. Applying the results of [31] and [32], fuzzy processes with possibilistic uncertainty, the source of which is extremal fuzzy time intervals, are constructed. The dynamics of EFCDS’s is described. Questions of the ergodicity of EFCDS’s are considered. Fuzzy-integral representations of controllable extremal fuzzy processes are given. Sufficient and necessary conditions are presented for the existence of an extremal fuzzy optimal control processes, for which we use R. Bellman’s optimality principle and take into consideration the gain-loss fuzzy process. A separate consideration is given to the case where an extremal fuzzy control process acting on the EFCDS does not depend on an EFCDS state. Applying Bellman’s optimality principle and assuming that the gain-loss process exists for the EFCDS, a variant of the fuzzy integral representation of an optimal control is given for the EFCDS. This variant employs the instrument of extended extremal fuzzy composition measures constructed in [32]. An example of constructing of the EFCDS optimal control is presented.

Keywords

Fuzzy Measure Compatibility Function Fuzzy Time Interval Fuzzy Process Current Time Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1947)zbMATHGoogle Scholar
  2. 2.
    Bellman, R.E., Esogbue, A.O.: Fuzzy Dynamic Programming and Its Extensions. In: Fuzzy Sets Secision Analysis. Stud. Management Sci., vol. 20, pp. 147–167. North-Holland, Amsterdam (1984)Google Scholar
  3. 3.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manage Sci. Ser. B. 17, 141–164 (1970)MathSciNetGoogle Scholar
  4. 4.
    Buckley, J.J., Feuring, J.: Fuzzy differential equations. Fuzzy Sets and Systems 110, 43–54 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Castillo, O., Melin, P.: Soft computing for Control of Non-Linear Dynamic Systems. Studies in Fuzziness and Soft Computing, vol. 73. Physica-Verlag, Wulzburg (2001)Google Scholar
  6. 6.
    Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  7. 7.
    Ding, Z., Ma, M., Kandel, A.: On the observativity of fuzzy dynamical control systems (I). Fuzzy Sets and Systems 95, 53–65 (1998)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)zbMATHGoogle Scholar
  9. 9.
    Dumitrescu, D., Haloiu, C., Dumitrescu, A.: Generators of Fuzzy Dynamical Systems. Fuzzy Sets and Systems 113, 447–451 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Esogbue, A.O., Fedrizzi, M., Kacprzyk, J.: Fuzzy dynamic programming with stochastic systems. In: Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making. Lecture Notes in Econom. and Math. Systems, vol. 310, pp. 266–285. Springer, Berlin (1988)Google Scholar
  11. 11.
    Esogbue, A.O., Kacprzyk, J.: Fuzzy Dynamic Programming. In: Fuzzy Sets in Decision Analysis, Operations Research and Statistics. Handb. Fuzzy Sets Ser., vol. 1, pp. 281–307. Kluwer Acad. Publ., Boston (1998)Google Scholar
  12. 12.
    Feng, Y.: Fuzzy stochastic differential systems. Fuzzy Sets and Systems 115, 351–363 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Freidman, M., Henne, M., Kandel, A.: Most typical values for fuzzy sets. Fuzzy Sets and Systems 87, 27–37 (1997)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy sets and Systems 69, 279–298 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals. Theory and Applications. Studies in Fuzziness and Soft Computing, vol. 40. Physica-Verlag, Heidelberg (2000)zbMATHGoogle Scholar
  16. 16.
    Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)zbMATHGoogle Scholar
  17. 17.
    Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24, 301–317 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kandel, A.: Fuzzy statistics and forecast evaluation. IEEE Trans. on Systems, Man and Cybernetics, SMG-8 5, 396–401 (1978)MathSciNetGoogle Scholar
  19. 19.
    Kandel, A., Byatt, W.J.: Fussy processes. Fuzzy Sets and Systems 4, 117–152 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Klir, G.J.: Architecture of Systems Problem Solving. Plenum Press, New York (1985)zbMATHGoogle Scholar
  21. 21.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hale, England (1988)zbMATHGoogle Scholar
  22. 22.
    Klir, G.J., Wang, Z., Harmanec, D.: Construction of fuzzy measures in expert systems. Fuzzy Sets and Systems 92, 251–264 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kloeden, P.E.: Fuzzy dynamical systems. Fuzzy Sets and Systems 7(3), 275–296 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: A fuzzy relational equation in dynamic fuzzy systems. Fuzzy Sets and Systems 101, 439–443 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Liu, B.: Toward fuzzy optimization without mathematical ambiguity. Fuzzy Optim. Decis. Mak. 1(1), 43–63 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Melin, P., Castillo, O.: Modelling, simulation and control of non-linear dynamical systems. In: An Intelligent Approach Using Soft Computing and Fractal Theory. With 1 IBM-PC floppy disk (3.5 inch; HD). Numerical Insights, vol. 2. Taylor & Francis, Ltd., London (2002)Google Scholar
  27. 27.
    Pack, J.Y., Han, H.K.: Fuzzy differential equations. Fuzzy Sets and Systems 110, 63–77 (2000)Google Scholar
  28. 28.
    Pap, E.: Null-additive Set Functions. In: Mathematics and its Applications, vol. 337. Kluwer Academic Publishers Group, Dordrecht (1995)Google Scholar
  29. 29.
    Piegat, A.: Fuzzy modeling and control. Studies in Fuzziness and Soft Computing, vol. 69. Physica-Verlag, Heidelberg (2001)zbMATHGoogle Scholar
  30. 30.
    Ruan, D., Kacprzyk, J., Fedrizzi, M.: Soft Computing for Risk Evaluation and Management. In: Applications in Technology, Environment and Finance. Physica-Verlag, Heidelberg (2001)Google Scholar
  31. 31.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. I. Extended extremal fuzzy measures. Int. J. Gen. Syst. 34(2), 107–138 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. II. Extended extremal fuzzy measures on composition products of measurable spaces. Int. J. Gen. Syst. 34(2), 139–167 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. III. Modeling of extremal and controllable extremal fuzzy processes. Int. J. Gen. Syst. 34(2), 169–198 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. IV. Identification of fuzzy-integral models of extremal fuzzy processes. Int. J. Gen. Syst. 35(4), 435–459 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sirbiladze, G.: Modelling of extremal fuzzy dynamic systems. V. Optimization of continuous controllable extremal fuzzy processes and the choice of decisions. Int. J. Gen. Syst. 35(5), 529–554 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. VI. Problems of states estimation (filtration) of extremal fuzzy process. Int. J. Gen. Syst. 36(1), 19–58 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Sirbiladze, G.: On fuzzy optimal controls in the weakly structurable continuous dynamic systems (WSCDS). New Math. Nat. Comput. 4(1), 41–60 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Sirbiladze, G.: Transformation theorems for extended lower and upper Sugeno integrals. Mat. Zametki 83(3), 439–460 (2008) (Russian)MathSciNetGoogle Scholar
  39. 39.
    Sirbiladze, G.: Bellman‘s Optimality Principle in the Weakly Structurable Dynamic Systems. In: 9th WSEAS Interneational Conference on Fuzzy Systems (FS 2008), Advanced Topics on Fuzzy Systems, Sofia, Bulgaria, May 2-4 (2008)Google Scholar
  40. 40.
    Sirbiladze, G., Gachechiladze, T.: Restored fuzzy measures in expert decision-making. Inform. Sci. 169(1/2), 71–95 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Sirbiladze, G., Sikharulidze, A.: Weighted fuzzy averages in fuzzy environment. I. Insufficient expert data and fuzzy averages. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 11(2), 139–157 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Sirbiladze, G., Sikharulidze, A.: Weighted fuzzy averages in fuzzy environment. II. Generalized weighted fuzzy expected values in fuzzy environment. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 11(2), 159–172 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Srivastava, P., Khare, M., Srivastava, Y.K.: Fuzzy dynamical systems-inverse and direct spectra. Fuzzy Sets and Systems 113, 439–445 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Thesis of Tokyo Insitute of Technology (1974)Google Scholar
  45. 45.
    Teodorescu, H.-N., Kandel, A., Schneider, M.: Fuzzy modeling and dynamics (preface). Fuzzy Sets and Systems 106, 1–2 (1999)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Yoshida, Y.: Markov chains with a transition possibility measure and fuzzy dynamic programming. Fuzzy Sets and Systems 66, 39–57 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Yoshida, Y. (ed.): Dynamical Aspects in Fuzzy Decision Making. Studies in Fuzziness and Soft Computing, vol. 73. Physica-Verlag, Wurzburg (2001)zbMATHGoogle Scholar
  48. 48.
    Yoshida, Y., Yasuda, M., Nakagami, J., Kyrano, M.: A limit theorem in dynamic fuzzy systems with a monotone property. Fuzzy Sets and Systems 94, 109–119 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gia Sirbiladze
    • 1
  1. 1.Department of Computer SciencesI. Javakhishvili Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations