Skip to main content

Chemical and biological impacts

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

During the past three decades, many studies have been devoted to the interaction between the MJO and the dynamical components of the global climate system. For example, the MJO has been shown to have important influences on monsoon onsets and breaks (Chapters 2, 3, 4, 5, 13), the diurnal cycle (e.g., Tian et al., 2006a; Ichikawa and Yasunari, 2007; Suzuki, 2009), tropical hurricanes and cyclones (e.g., Maloney and Hartmann, 2000a, b; Bessafi and Wheeler, 2006; Camargo et al., 2009), extratropical and high-latitude weather patterns (Chapter 14), El Ninñ o and the Southern Oscillation (ENSO) (Chapter 9), and oceans (Chapters 6, 7, 15). However, little attention has been paid to the impacts of the MJO on the chemical and biological components of the global climate system, despite many of these components being relevant to human life and society.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beegum, S. N., K. K. Moorthy, S. S. Babu, R. R. Reddy, and K. R. Gopal (2009) Large scale modulations of spectral aerosol optical depths by atmospheric planetary waves. Geophys. Res. Lett., 36, L03810, doi: 10.1029/2008gl036509.

    Article  Google Scholar 

  • Bessafi, M. and M. C. Wheeler (2006) Modulation of south Indian ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638–656.

    Article  Google Scholar 

  • Bowman, K. P. (1989) Global patterns of the quasi-biennial oscillation in total ozone. J. Atmos. Sci., 46, 3328–3343.

    Article  Google Scholar 

  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel (2009) Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 3061–3074, doi: 10.1175/2009jas3101.1.

    Article  Google Scholar 

  • Camp, C. D., M. S. Roulston, and Y. L. Yung (2003) Temporal and spatial patterns of the interannual variability of total ozone in the Tropics. J. Geophys. Res., 108, 4643, doi: 10.1029/2001JD001504.

    Article  Google Scholar 

  • Cortesi, U., J. C. Lambert, C. De Clercq, G. Bianchini, T. Blumenstock, A. Bracher, E. Castelli, V. Catoire, K. V. Chance, M. De Maziere et al. (2007) Geophysical validation of MIPAS-ENVISAT operational ozone data. Atmos. Chem. Phys., 7(18), 4807–4867.

    Article  CAS  Google Scholar 

  • Dickerson, R. R., G. J. Huffman, W. T. Luke, L. J. Nunnermacker, K. E. Pickering, A. C. D. Leslie, C. G. Lindsey, W. G. N. Slinn, T. J. Kelly, P. H. Daum et al. (1987) Thunderstorms: An important mechanism in the transport of air-pollutants. Science, 235(4787), 460–464, doi: 10.1126/science.235.4787.460.

    Article  CAS  Google Scholar 

  • Diner, D. J., J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl et al. (1998) Multi-angle Imaging SpectroRadiometer (MISR): Instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens., 36(4), 1072–1087.

    Article  Google Scholar 

  • Doherty, R. M., D. S. Stevenson, W. J. Collins, and M. G. Sanderson (2005) Influence of convective transport on tropospheric ozone and its precursors in a chemistry–climate model. Atmos. Chem. Phys., 5, 3205–3218.

    Article  CAS  Google Scholar 

  • Doherty, R. M., D. S. Stevenson, C. E. Johnson, W. J. Collins, and M. G. Sanderson (2006) Tropospheric ozone and El Nino-Southern Oscillation: Influence of atmospheric dynamics, biomass burning emissions, and future climate change. J. Geophys. Res., 111, D19304, doi: 10.1029/2005jd006849.

    Article  Google Scholar 

  • Edwards, D. P., L. K. Emmons, D. A. Hauglustaine, D. A. Chu, J. C. Gille, Y. J. Kaufman, G. Petron, L. N. Yurganov, L. Giglio, M. N. Deeter et al. (2004) Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. J. Geophys. Res, 109(D24), D24202, doi: 10.1029/2004jd004727.

    Article  Google Scholar 

  • Fishman, J., K. W. Bowman, J. P. Burrows, A. Richter, K. V. Chance, D. P. Edwards, R. V. Martin, G. A. Morris, R. B. Pierce, J. R. Ziemke et al. (2008) Remote sensing of tropospheric pollution from space. Bull. Amer. Meteorol. Society, 89(6), 805–821, doi: 10.1175/ 2008bams2526.1.

    Article  Google Scholar 

  • Fujiwara, M., K. Kita, and T. Ogawa (1998) Stratosphere-troposphere exchange of ozone associated with the equatorial Kelvin wave as observed with ozonesondes and rawinsondes. J. Geophys. Res., 103, 19173–19182.

    Article  CAS  Google Scholar 

  • Gao, X. H. and J. L. Stanford (1990) Low-frequency oscillations in total ozone measurements. J. Geophys. Res., 95, 13797–13806.

    Article  Google Scholar 

  • Hendon, H. H. and M. L. Salby (1994) The life-cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 2225–2237.

    Article  Google Scholar 

  • Hood, L. L. (1997) The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere. J. Geophys. Res., 102, 1355–1370.

    Article  CAS  Google Scholar 

  • Ichikawa, H. and T. Yasunari (2007) Propagating diurnal disturbances embedded in the Madden–Julian Oscillation. Geophys. Res. Lett., 34, L18811, doi: 10.1029/ 2007GL030480.

    Article  Google Scholar 

  • IPCC (2007) In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis (contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change). Cambridge University Press, Cambridge, U.K., 996 pp.

    Google Scholar 

  • Juneng, L., M. T. Latif, F. T. Tangang, and H. Mansor (2009) Spatio-temporal characteristics of PM10 concentration across Malaysia. Atmos. Environ., 43, 4584–4594, doi: 10.1016/ j.atmosenv.2009.06.018.

    Article  CAS  Google Scholar 

  • Kahn, R. A., B. J. Gaitley, J. V. Martonchik, D. J. Diner, K. A. Crean, and B. Holben (2005) Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res., 110, D10S04, doi: 10.1029/2004JD004706.

    Google Scholar 

  • Kley, D., P. J. Crutzen, H. G. J. Smit, H. Vomel, S. J. Oltmans, H. Grassl, and V. Ramanathan (1996) Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry. Science, 274, 230–233.

    Article  CAS  Google Scholar 

  • Kyrola, E., J. Tamminen, G. W. Leppelmeier, V. Sofieva, S. Hassinen, J. L. Bertaux, A. Hauchecorne, F. Dalaudier, C. Cot, O. Korablev et al.; (2004) GOMOS on Envisat: An overview. Adv. Space Res., 33(7), 1020–1028, doi: 10.1016/s0273-1177(03)00590-8.

    Article  Google Scholar 

  • Lau, K. M. and P. H. Chan (1985) Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113, 1889–1909.

    Article  Google Scholar 

  • Lawrence, M. G., R. von Kuhlmann, M. Salzmann, and P. J. Rasch (2003) The balance of effects of deep convective mixing on tropospheric ozone. Geophys. Res. Lett., 30, 1940, doi: 10.1029/2003gl017644.

    Article  Google Scholar 

  • Li, K. F., B. Tian, D. E. Waliser, and Y. L. Yung (2010) Tropical mid-tropospheric CO2 variability driven by the Madden–Julian oscillation. Proceedings of the National Academy of Sciences U.S.A., 107(45), 19171–19175, doi: 10.1073/pnas.1008222107.

    Article  CAS  Google Scholar 

  • Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, D. R. Lu, and E. Kyrola (2009) A Madden–Julian Oscillation-triggered record ozone minimum over the Tibetan Plateau in December 2003 and its association with stratospheric ''low-ozone pockets''. Geophys. Res. Lett., 36, L15830, doi: 10.1029/2009gl039025.

    Article  Google Scholar 

  • Maloney, E. D. and D. L. Hartmann (2000a) Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 1451–1460.

    Article  Google Scholar 

  • Maloney, E. D. and D. L. Hartmann (2000b) Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian Oscillation. Science, 287, 2002–2004, doi: 10.1126/ science.287.5460.2002.

    Article  CAS  Google Scholar 

  • Nakazawa, T. (1988) Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Japan, 66, 823–839.

    Google Scholar 

  • Pickering, K. E., A. M. Thompson, R. R. Dickerson, W. T. Luke, D. P. McNamara, J. P. Greenberg, and P. R. Zimmerman (1990) Model-calculations of tropospheric ozone production potential following observed convective events. J. Geophys. Res., 95, 1404914062.

    Article  Google Scholar 

  • Pickering, K. E., A. M. Thompson, W. K. Tao, R. B. Rood, D. P. McNamara, and A. M. Molod (1995) Vertical transport by convective clouds: Comparisons of 3 modeling approaches. Geophys. Res. Lett., 22, 1089–1092.

    Article  Google Scholar 

  • Pickering, K. E., Y. S. Wang, W. K. Tao, C. Price, and J. F. Muller (1998) Vertical distributions of lightning NOx for use in regional and global chemical transport models. J. Geophys. Res., 103, 31203–31216.

    Article  CAS  Google Scholar 

  • Sabutis, J. L., J. L. Stanford, and K. P. Bowman (1987) Evidence for 35-50-day low-frequency oscillations in Total Ozone Mapping Spectrometer data. Geophys. Res. Lett., 14, 945–947.

    Article  CAS  Google Scholar 

  • Shiotani, M. (1992) Annual, quasi-biennial, and El Nino-Southern Oscillation (ENSO) time- scale variations in equatorial total ozone. J. Geophys. Res., 97, 7625–7633.

    Article  CAS  Google Scholar 

  • Solomon, S., D. W. J. Thompson, R. W. Portmann, S. J. Oltmans, and A. M. Thompson (2005) On the distribution and variability of ozone in the tropical upper troposphere: Implications for tropical deep convection and chemical-dynamical coupling. Geophys. Res. Lett., 32, L23813, doi: 10.1029/2005GL024323.

    Article  Google Scholar 

  • Suzuki, T. (2009) Diurnal cycle of deep convection in super clusters embedded in the Madden- Julian Oscillation. J. Geophys. Res., 114, D22102, doi: 10.1029/2008jd011303.

    Article  Google Scholar 

  • Thompson, A. M., J. C. Witte, H. G. J. Smit, S. J. Oltmans, B. J. Johnson, V. Kirchhoff, and F. J. Schmidlin (2007) Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology, 3: Instrumentation, station-to-station variability, and evaluation with simulated flight profiles. J. Geophys. Res., 112, D03304, doi: 10.1029/ 2005JD007042.

    Article  Google Scholar 

  • Tian, B., D. E. Waliser, and E. J. Fetzer (2006a) Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 33, L20704, doi: 10.1029/ 2006GL027752.

    Article  Google Scholar 

  • Tian, B., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang (2006b) Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 2462–2485, doi: 10.1175/JAS3782.1.

    Article  Google Scholar 

  • Tian, B., Y. L. Yung, D. E. Waliser, T. Tyranowski, L. Kuai, E. J. Fetzer, and F. W. Irion (2007) Intraseasonal variations of the tropical total ozone and their connection to the Madden–Julian Oscillation. Geophys. Res. Lett., 34, L08704, doi: 10.1029/ 2007GL029451.

    Article  Google Scholar 

  • Tian, B., D. E. Waliser, R. A. Kahn, Q. Li, Y. L. Yung, T. Tyranowski, I. V. Geogdzhayev, M. I. Mishchenko, O. Torres, and A. Smirnov (2008) Does the Madden–Julian Oscillation influence aerosol variability? J. Geophys. Res., 113(D12), D12215, doi: 10.1029/2007jd009372.

    Google Scholar 

  • Tian, B., D. E. Waliser, R. A. Kahn, and S. Wong (2011) Modulation of Atlantic aerosols by the Madden–Julian Oscillation. J. Geophys. Res., 116, D15108, doi: 10.1029/ 2010JD015201.

    Article  Google Scholar 

  • von Kuhlmann, R., M. G. Lawrence, U. Poschl, and P. J. Crutzen (2004) Sensitivities in global scale modeling of isoprene. Atmos. Chem. Phys., 4, 1–17.

    Article  Google Scholar 

  • Waliser, D. E. (2005) Predictability and forecasting. In: W. K. M. Lau and D. E. Waliser (Eds.), Intraseasonal Variability of the Atmosphere–ocean Climate System. SpringerVerlag, Berlin, pp. 389–424.

    Google Scholar 

  • Waliser, D. E. (2006) Intraseasonal variability. In: B. Wang (Ed.), The Asian Monsoon. Springer/Praxis, Heidelberg, Germany/Chichester, U.K., pp. 203–257.

    Google Scholar 

  • Waliser, D. E., R. Murtugudde, P. Strutton, and J. L. Li (2005) Subseasonal organization of ocean chlorophyll: Prospects for prediction based on the Madden–Julian Oscillation. Geophys. Res. Lett., 32, L23602, doi: 10.1029/2005GL024300.

    Article  Google Scholar 

  • Wang, B. and H. Rui (1990) Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397–413.

    Article  Google Scholar 

  • Waters, J. W., L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, D. A. Flower et al. (2006) The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44(5), 1075–1092, doi: 10.1109/tgrs.2006.873771.

    Article  Google Scholar 

  • Winker, D. M., J. Pelon, and M. P. McCormick (2003) The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. Soc. Photo-opt. Inst. Eng., 4893, 1–11.

    Google Scholar 

  • Wong, S. and A. E. Dessler (2007) Regulation of H2O and CO in tropical tropopause layer by the Madden–Julian oscillation. J. Geophys. Res., 112, D14305, doi: 10.1029/ 2006jd007940.

    Article  Google Scholar 

  • Worden, H. M., J. A. Logan, J. R. Worden, R. Beer, K. Bowman, S. A. Clough, A. Eldering, B. M. Fisher, M. R. Gunson, R. L. Herman et al. (2007) Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: Methods and initial results. J. Geophys. Res., 112(D3), D03309, doi: 10.1029/2006jd007258.

    Google Scholar 

  • Zhang, C. D. (2005) Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/ 2004RG000158.

    Google Scholar 

  • Ziemke, J. R. and S. Chandra (2003) A Madden–Julian Oscillation in tropospheric ozone. Geophys. Res. Lett., 30, 2182, doi: 10.1029/2003GL018523.

    Article  Google Scholar 

  • Ziemke, J. R., S. Chandra, M. R. Schoeberl, L. Froidevaux, W. G. Read, P. F. Levelt, and P. K. Bhartia (2007) Intra-seasonal variability in tropospheric ozone and water vapor in the tropics. Geophys. Res. Lett., 34, L17804, doi: 10.1029/2007gl030965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lau, W.K.M., Waliser, D.E., Tian, B. (2012). Chemical and biological impacts. In: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13914-7_18

Download citation

Publish with us

Policies and ethics