Designing Service Marts for Engineering Search Computing Applications

  • Alessandro Campi
  • Stefano Ceri
  • Andrea Maesani
  • Stefania Ronchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6189)


The use of patterns in data management is not new: in data warehousing, data marts are simple conceptual schemas with exactly one core entity, describing facts, surrounded by multiple entities, describing data analysis dimensions; data marts support special analysis operations, such as roll up, drill down, and cube. Similarly, Service Marts are simple schemas which match "Web objects" by hiding the underlying data source structures and presenting a simple interface, consisting of input, output, and rank attributes; attributes may have multiple values and be clustered within repeating groups. Service Marts support Search Computing operations, such as ranked access and service compositions. When objects are accessed through Service Marts, responses are ranked lists of objects, which are presented subdivided in chunks, so as to avoid receiving too many irrelevant objects – cutting results and showing only the best ones is typical of search services. This paper gives a formal definition of Service Marts and shows how Service Marts can be implemented and used for building Search Computing applications.


Service Composition Access Pattern Service Interface Query Execution Query Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Berners-Lee, T., Handler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)Google Scholar
  3. 3.
    Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data marts for data warehouses. ACM Trans. Software Engineering Methodology 10(4), 452–483 (2001)CrossRefGoogle Scholar
  4. 4.
    Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid query: multi-domain exploratory search on the Web. In: Proc. WWW-2010 Conference (2010, to appear)Google Scholar
  5. 5.
    Braga, D., Campi, A., Ceri, S., Raffio, A.: Joining the results of heterogeneous search engines. Information Systems 33(7-8), 658–680 (2008)CrossRefGoogle Scholar
  6. 6.
    Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multi-domain queries on the Web. In: Proc. VLDB, vol. 1(1), pp. 562–573 (August 2008)Google Scholar
  7. 7.
    Ceri, S., Brambilla, M. (eds.): Search Computing - Challenges and Directions. LNCS, vol. 5950. Springer, Heidelberg (to appear, March 2010)Google Scholar
  8. 8.
    Ceri, S., Matera, M., Rizzo, F., Demaldè, V.: Designing data-intensive Web applications for content accessibility using Web marts. Commun. ACM 50(4), 55–61 (2007)CrossRefGoogle Scholar
  9. 9.
    Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalà, M.: Speaking a common language: A conceptual model for describing service-oriented systems. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    CORDIS (September 17, 2009),
  11. 11.
    De Witt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A., Hsiao, H.-I., Rasmussen, R.: The Gamma Database Machine Project. IEEE TKDE 2(1), 44–62 (1990)Google Scholar
  12. 12.
    Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data sources: A machine-learning approach. In: SIGMOD (2001)Google Scholar
  13. 13.
    Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic Commerce Research and Applications 1(2), 113–137Google Scholar
  14. 14.
    Fensel, D., Musen, M.: Special Issue on Semantic Web Technology. IEEE Intelligent Systems (IEEE IS) 16 (2)Google Scholar
  15. 15.
  16. 16.
    Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data extraction project: back and forth between theory and practice. In: PODS ’04 (2004)Google Scholar
  17. 17.
  18. 18.
    Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information Sources Using Source Descriptions. In: VLDB (1996)Google Scholar
  19. 19.
  20. 20.
    Martin, D., Burstein, et al.: Bringing Semantics to Web Services with OWL-S. In: World Wide Web, vol. 10(3), pp. 243–277 (September 2007)Google Scholar
  21. 21.
    OASIS. Web Services Business Process Execution Language. Technical report (2007),
  22. 22.
    Quartel, D.S., Steen, M.W., Pokraev, S., Sinderen, M.J.: COSMO: A conceptual framework for service modeling and refinement. Information Systems Frontiers 9(2-3), 225–244 (2007)CrossRefGoogle Scholar
  23. 23.
    Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over Web services. In: VLDB ’06, VLDB Endowment, pp. 355–366 (2006)Google Scholar
  24. 24.
    W3C. Web Service Choreography Interface (WSCI) 1.0. W3C Note (August 2002)Google Scholar
  25. 25.
    W3C. Web Services Choreography Description Language Version 1.0 (December 2004)Google Scholar
  26. 26.
    Wang, J., Wen, J.R., Lochovsky, F., Ma, W.Y.: Instance-based schema matching for Web databases by domainspecific query probing. In: VLDB (2004)Google Scholar
  27. 27.
    Web Services Architecture (2004),
  28. 28.
    Wu, W., Yu, C., Doan, A., Meng, W.: An interactive clustering-based approach to integrating source query interfaces on the Deep Web. In: SIGMOD (2004)Google Scholar
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alessandro Campi
    • 1
  • Stefano Ceri
    • 1
  • Andrea Maesani
    • 1
  • Stefania Ronchi
    • 1
  1. 1.Politecnico di MilanoItaly

Personalised recommendations